Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Physics formula sheet, Lecture notes of Physics

Formula sheet for physics that I used in first year uni.

Typology: Lecture notes

2019/2020
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 05/29/2020

ace_2001
ace_2001 🇨🇦

5

(2)

1 document

Partial preview of the text

Download Physics formula sheet and more Lecture notes Physics in PDF only on Docsity! Formula Sheet: Physics 220 A. Carmichael Position, velocity and acceleration ∆x/∆t = vav ∆v/∆t = aav dx/dt = v(t) dv/dt = a(t)∫ a(t)dt = ∆v ∫ v(t)dt = ∆x Uniformly accelerated motion v = v0 + at x = x0 + v0t+ 1 2at 2 v2 = v20 + 2a(x− x0) x = x0 + ( v0 + v 2 ) t Projectile motion 2D (uniform field g=const.) x′(0) = ẋ(0) = vx(0) = v(0) cos θ = v0 cos θ y′(0) = ẏ(0) = vy(0) = v(0) sin θ = v0 sin θ y′′ = −g = const. x′′ = 0 = const. y′(t) = y′(0)− gt x′(t) = x′(0) = const. y(t) = y(0) + y′(0)t− 12gt 2 x(t) = x(0) + x′(0)t Alternative form ay = −g = const. ax = 0 = const. vy(t) = vy(0)− gt vx(t) = vx(0) = const. y(t) = y(0) + vy(0)t− 12gt 2 x(t) = x(0) + vx(0)t Trajectory equation for x(0) = 0 y(x) = [ vy(0) vx(0) ] x− [ 1 2 g v2x(0) ] x2 + y(0) y(x) = x tan θ − [ 1 2 g v2(0) cos2 θ ] x2 + y(0) Velocity-position equations v2(y) = v2(0)− 2gy v2y(y) = v 2 y(0)− 2gy Special points: Range R, height h, flight time T h = v2y(0)/2g h = v 2(0) sin2 θ/2g R = 2vx(0)vy(0)/g R = v 2(0) sin 2θ/g T = 2vy(0)/g T = 2v(0) sin θ/g R = 4h cot θ Circular motion Centripetal acceleration ar = v 2/r = rω2 Arc length s = rθ Tangential speed v = rω = 2πr/T Tangetial acceleration at = rα Angular frequency ω = 2πf = 2π/T Frequency and time period f = 1/T Uniform circular motion at = 0, α = 0 Forces and Momentum Newton’s second law (general) ~F = d~p/dt Potential energy and force (1D) F = −dU/dx Potential energy and force (3D) ~F = −∇U Linear Momentum ~p = m~v Friction (static) fs ≤ fs,max = µsN Friction (kinetic) fk = µkN Grav. fields due to point or spherical sources Force between masses F = Gmm′/r2 Gravity field of mass m g = Gm/r2 G.P.E. two masses U = −Gmm′/r Grav. potential of m V = −Gm/r Orbital motion Kepler’s 2nd Law T 2 = (4π2/GM)r3 Orbit (circular) v2 = GM/r Escape velocity v2 = 2GM/r Constants related to gravity Universal const. of gravitation G = 6.67× 10−11 N ·m2/kg2 Earth surface gravity g = 9.81 m/s2 Earth mass & G GME = 3.98× 1014 m3/s2 Solar mass & G GM = 1.33× 1020 m3/s2 Moon mass & G GM$ = 4.91× 1012 m3/s2 Work and energy Kinetic energy K = 12mv 2 Work W = ∫ ~F · d~r Power P = dE/dt = dW/dt Average Power Pav = ∆E/∆t = W/∆t Instantaneous Power P = ~F · ~v = F‖v Work-energy theorem Wnet = Wc +Wnc = ∆K Work done by con. forces Wc = −∆U Mechanical energy Emech = K + U Conservation of mech. energy Ki + Ui +Wnc = Kf + Uf Work done by non-con. forces Wnc = −∆Emech GPE uniform field U(y) = mgy + U(0) Potential uniform grav. field V (y) = gy + V (0) GPE uniform field ∆Ugrav. = mg∆y = mgh Mechanical energy Emech. = K + Utotal Centre of mass ~Rcm = 1 M ∑ mi~ri ~Rcm = 1 M ∫ ~rdm = 1 M ∫ ~rρdV Theorems for variable forces Impulse-momentum ~J = ∆~p = ~Fav∆t = ∫ ~Fnet(t)dt version: Wednesday 3rd October, 2018 12:06 Page 1 SFSU Department of Physics Formula Sheet: Physics 220 A. Carmichael Work-energy Wnet = ∫ ~Fnet · d~r = ∆K Types of collision • totally elastic: No loss of K.E. , e = 1 • inelastic: Some loss of K.E., 0 < e < 1 • completely inelastic: v1 = v2 = v, e = 0 Max K.E. loss Collision conservation laws (1D & 2D) Momentum m1~u1 +m2~u2 = m1~v1 +m2~v2 K.E. (elastic only) 12m1u 2 1 + 1 2m2u 2 2 = 1 2m1v 2 1 + 1 2m2v 2 2 Newton’s collision law (1D only) Newton’s collision law (1D) (v2 − v1) = −e(u2 − u1) Collisions 1D Elastic (derived from the above) v1 = m1 −m2 m1 +m2 u1 + 2m2 m1 +m2 u2 v2 = 2m1 m1 +m2 u1 + m2 −m1 m1 +m2 u2 Collisions 1D Inelastic (derived from the above) v1 = m1 − em2 m1 +m2 u1 + (1 + e)m2 m1 +m2 u2 v2 = (1 + e)m1 m1 +m2 u1 + m2 − em1 m1 +m2 u2 Rotational motion Anguar velocity, acceleration ω = dθ/dt, α = dω/dt Angular displacement ∆θ = ∫ ωdt Linear and angular connection vt = Rω, at = Rα Torque ~Γ = ~r × ~F Magnitude of torque Γ = rF sinϕ = rF⊥ Angular momentum (particle) ~L = ~r × ~p Angular momentum (solid) ~L = I~ω Moment of inertia (particles) I = Σmr2axis Moment of inertia (solid) I = ∫ r2axisdm N2 for rotation (general form) ~Γ = d~L/dt N2 for rotation (I=const.) ~Γ = I~α Rotational K.E. Kr = 1 2Iω 2 Work done by a torque W = ∫ Γ · dθ = ∆Kr Work done by const. or av. torque W = Γ ·∆θ = ∆Kr Rotational power P = Γω Conservation of ~L Iiωi = Ifωf Rolling without slipping vcm = Rω, acm = Rα Parallel axis theorem I = Icm +MD 2 Total kinetic energy I = 12Icmω 2 + 12Mv 2 cm Rotational motion with (α = const.) ω = ω0 + αt ∆θ = ω0t+ 1 2αt 2 ω2 = ω20 + 2α∆θ ∆θ = ω0 + ω 2 t Substitutions for rotational dynamics s =⇒ ∆θ ~F =⇒ ~Γ u =⇒ ω0 m =⇒ I v =⇒ ω K = 12mv 2 =⇒ Kr = 12Iω 2 a =⇒ α ~p = m~v =⇒ ~L = I~ω Moments of inertia Moment Object Axis I = MR2 Uniform ring/tube Through C.M. I = 12MR 2 Uniform disk/cylinder Through C.M. I = 112ML 2 Uniform rod Through C.M. I = 13ML 2 Uniform rod Through end I = 25MR 2 Uniform sphere Through C.M. I = 23MR 2 Hollow sphere Through C.M. I = 13Ma 2 Slab width a Along edge (door) Simple harmonic motion (SHM) Hooke’s Law F (x) = −kx acceleration a(x) = −ω2x = −n2x Velocity v(x) = ±ω √ A2 − x2 SPE or EPE for a spring U(x) = 12kx 2 Total energy E = 12kA 2 = 12mω 2A2 Position x(t) x(t) = A cos(ωt+ ϕ) Velocity v(t) v(t) = −Aω sin(ωt+ ϕ) Acceleration a(t) a(t) = −Aω2 cos(ωt+ ϕ) Period, mass-spring T = 1 f = 2π ω = 2π √ m k Period, simple pendulum T = 1 f = 2π n = 2π √ l g Period, physical pendulum T = 1 f = 2π n = 2π √ I mgr Period, torsional pendulum T = 1 f = 2π n = 2π √ I κ version: Wednesday 3rd October, 2018 12:06 Page 2 SFSU Department of Physics Formula Sheet: Physics 220 A. Carmichael Mathematical constants e = 2.71828... 1o = 1.745× 10−2 rad π = 3.14159... 1′ = 2.9089× 10−4 rad log10 e = 0.434... 1 ′′ = 4.8481× 10−6 rad ln 10 = 2.3025... 1 rad = 57.296o ln 2 = 0.693... π/6 rad = 30o e−1 = 0.368... π/3 rad = 60o (1− e−1) = 0.632... π/4 rad = 45o √ 3/2 = 0.866... 1 rpm = 0.1047 rad/s 1/ √ 2 = 0.707... 1 rad/s = 9.549 rpm Greek alphabet Letter Upper case Lower case Alpha A α Beta B β Gamma Γ γ Delta ∆ δ Epsilon E , ε Zeta Z ζ Eta H η Theta Θ θ Iota I ι Kappa K κ Lambda Λ λ Mu M µ Nu N ν Xi Ξ ξ Omicron O o Pi Π π Rho P ρ Sigma Σ σ Tau T τ Upsilon Y υ Phi Φ φ, ϕ Chi X χ Psi Ψ ψ Omega Ω ω SI units and derived units Quantity Symbol Unit Name Basic Units Mass m kg kilogram kg Length l m meter m Time t s second s Force F N Newton kg ms−2 Energy E J Joule kg m2s−2 Power P W = Js−1 Watt kg m2s−3 Pressure p Pa = N.m2 Pascal kg/ms2 Abbreviations used: atm.=atmosphere (pressure) con. = conservative (force) AC = Alternating Current BVP = Boundary Value Problem CM = Centre of Mass DC = Direct Current (or Detective Comics) EM or E&M = ElectroMagnetism EMF = ElectroMotive Force (voltage) EPE = Elastic Potential Energy GR = General Relativity GPE = Gravitational Potential Energy G.T. = Galilean Transformation IC = Initial Condition IVP = Initial Value Problem ODE = Ordinary Differential Equation PD = Potential Difference PDE = Partial Differential Equation PE = Potential Energy L.T. = Lorentz Transformation SHM = Simple Harmonic Motion SHO = Simple Harmonic Oscillator SPE = Strain/Spring Potential Energy SR = Special Relativity STP = Standard Temperature and Pressure (20o C, 1 atm) TIR = Total Internal Reflection N1,N2,N3= Newton’s laws of motion T0,T1,T2,T3= the laws of thermal physics K1,K2,K3= Kepler’s laws of planetary motion Metric Prefixes exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deci d 10−1 centi c 10−2 milli m 10−3 micro µ 10−6 nano n 10−9 pico p 10−12 femto f 10−15 atto a 10−18 version: Wednesday 3rd October, 2018 12:06 Page 5 SFSU Department of Physics Formula Sheet: Physics 220 A. Carmichael Unit Conversions Quantity Units Conversion or value Length inch, cm 1 in. = 2.54 cm Length foot, cm 1 ft = 30.48 cm Length mile, km 1 mile = 1.609 km Energy electron-volt, Joule 1 eV = 1.602× 10−19 J Energy calorie, Joule 1 cal = 4.1868 J Energy British thermal unit, Joule 1 Btu = 1055 J Energy foot-pound, Joule 1 ft · lb = 1.356 J Energy kilowatt-hour, Joule 1 kW · h = 3.600 MJ Power horsepower, Watt 1 hp = 746 Watt Mass atomic unit, kg 1 u = 1.6605× 10−27 kg Force pound, Newton 1 lb = 4.442 N Density g/cm3 → kg/m3 1 g/cm3 = 1000 kg/m3 Pressure Pascal, psi 1 Pa = 1 N/m2 = 1.450× 10−4 psi Pressure atmosphere, Pascal 1 atm = 101, 325 Pa = 760 Torr = 14.7 psi Pressure psi, Pascal 1 psi = 6.895× 103 Pa Pressure mm Hg 1 torr = 1 mm Hg = 0.0394 in Hg = 1.333× 102 Pa Pressure bar 1 bar = 105 Pa Volume litre 1 l = 103 cm3 = 10−3 m3 = 1.057 qt (US) Volume quart (US) 1 qt (US) = 946 ml Volume gallon (US) 1 gal.(US) = 3.758 l Angle rev, rad,deg 1 rev = 360o = 2π rad Astrophysical Data Body surface g Mass GM Radius Orbit Radius Orbit Period Symbol (m/s2) kg (m3/s2) m m Earth years Sun −− 1.99× 1030 1.33× 1020 6.96× 108 −− −− Earth 9.81 5.97× 1024 3.98× 1014 6.37× 106 1.50× 1011 1.00 ♁ Moon 1.62 7.36× 1022 4.91× 1012 1.74× 106 −− −− $ version: Wednesday 3rd October, 2018 12:06 Page 6 SFSU Department of Physics Formula Sheet: Physics 220 A. Carmichael Symbols used in mechanics: A Amplitude for SHM A, A1, A2 Cross sectional area of pipe a Acceleration at Tangential component of acceleration ar Radial component of acceleration e Coefficient of resitution E Total energy F , Fav Force, average force f Frequency (rev/second or cycles/second) f Friction (force) G Universal gravitation constant g Gravitational field strength h depth or height I Moment of inertia ~J Impulse (change in momentum ~J = ∆~p) K Kinetic energy Kr Rotational kinetic energy k Spring constant k wavenumber 2π/λ ~L Angular momentum l Length M , m Mass n Normal force P Power Pav Average power p Momentum r radius s Displacement T Time period/ time of flight T tension U Potential energy u velocity at time t = 0 v velocity at time t W Work Wc Work done by a con. force(s) Wnc Work done by non-con. force(s) Wnet Work done by net force Y Young’s modulus α Angular acceleration (rad/s2) ∆ change in... µk Coefficient of kinetic friction µs Coefficient of static friction ω Angular speed at time t (rad/s) ω0 Angular speed at time t = 0 (rad/s) ∆θ angular displacement ∆θ = θ − θ0 θ0 Angular position at time t = 0 Γ Torque ρ density (mass/volume) version: Wednesday 3rd October, 2018 12:06 Page 7 SFSU Department of Physics
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved