Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Practice paper of mathematics (class 12), Assignments of Mathematics

MCQ practice paper of mathematics class 12

Typology: Assignments

2021/2022

Available from 09/14/2023

suhan-chanalia
suhan-chanalia ๐Ÿ‡ฎ๐Ÿ‡ณ

2 documents

1 / 78

Toggle sidebar

Related documents


Partial preview of the text

Download Practice paper of mathematics (class 12) and more Assignments Mathematics in PDF only on Docsity! Q1. ๐ผ๐‘“ โ€‰๐‘“: ๐‘… โˆ’ {3 5 } โ†’ ๐‘…โ€‰beโ€‰definedโ€‰byโ€‰๐‘“(๐‘ฅ) = 3๐‘ฅ+2 5๐‘ฅโˆ’3 , โ€‰then A. fโˆ’1(x)=f(x) B. fโˆ’1(x)=โˆ’f(x) C. fof(x)=โˆ’x D. ๐‘“โˆ’1(๐‘ฅ) = 1 20 ๐‘“(๐‘ฅ) Answer: A Explanation: Given that, ๐‘“(๐‘ฅ) = 3๐‘ฅ + 2 5๐‘ฅ โˆ’ 3 โ‡’ ๐‘ฆ = 3๐‘ฅ + 2 5๐‘ฅ โˆ’ 3 โ‡’ 3๐‘ฅ + 2 = 5๐‘ฅ๐‘ฆ โˆ’ 3๐‘ฆ โ‡’ ๐‘ฅ(3 โˆ’ 5๐‘ฆ) = โˆ’3๐‘ฆ โˆ’ 2 โ‡’ ๐‘ฅ = 3๐‘ฆ + 2 5๐‘ฆ โˆ’ 3 โ‡’ ๐‘“โˆ’1(๐‘ฅ) = 3๐‘ฅ + 2 5๐‘ฅ โˆ’ 3 โ‡’ ๐‘“โˆ’1(๐‘ฅ) = ๐‘“(๐‘ฅ) Q2. ๐ฟ๐‘’๐‘ก ๐‘“: [2, โˆž) โ†’ ๐‘… ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘’๐‘‘ ๐‘๐‘ฆ ๐‘“(๐‘ฅ) = ๐‘ฅ2 โˆ’ 4๐‘ฅ + 5, ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘“ ๐‘–๐‘  A. R B. [1, โˆž) C. [4, โˆž) D. [5, โˆž) Answer: B Explanation: ๐‘ฎ๐’Š๐’—๐’†๐’ ๐’•๐’‰๐’‚๐’• ๐’‡(๐’™) = ๐’™๐Ÿ โˆ’ ๐Ÿ’๐’™ + ๐Ÿ“ ๐‹๐ž๐ญ ๐’š = ๐’™๐Ÿ โˆ’ ๐Ÿ’๐’™ + ๐Ÿ“ โ‡’ ๐’š = ๐’™๐Ÿ โˆ’ ๐Ÿ’๐’™ + ๐Ÿ’ โˆ’ ๐Ÿ’ + ๐Ÿ“ โ‡’ ๐’š = (๐’™ โˆ’ ๐Ÿ)๐Ÿ โˆ’ ๐Ÿ’ + ๐Ÿ“ โ‡’ ๐’š = (๐’™ โˆ’ ๐Ÿ)๐Ÿ + ๐Ÿ โ‡’ ๐’š โˆ’ ๐Ÿ = (๐’™ โˆ’ ๐Ÿ)๐Ÿ โ‡’ ๐’™ โˆ’ ๐Ÿ = โˆš๐’š โˆ’ ๐Ÿ โ‡’ ๐’™ = ๐Ÿ + โˆš๐’š โˆ’ ๐Ÿ โˆด ๐’š โˆ’ ๐Ÿ โ‰ฅ ๐ŸŽ, ๐’š โ‰ฅ ๐Ÿ ๐‘ป๐’‰๐’Š๐’” ๐’Š๐’Ž๐’‘๐’๐’Š๐’†๐’” ๐’“๐’‚๐’๐’ˆ๐’† ๐’Š๐’” [๐Ÿ, โˆž) Q3.The set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mappings from A to B is A. 720 B. 120 C. 0 D. None of these Answer: C Explanation: We know that if A and B are two non-empty finite sets containing m and n elements respectively , then the number of one-one and onto mapping from A to B is: ๐‘›! โ€‰๐‘–fโ€‰๐‘š = ๐‘› 0, โ€‰๐‘–fโ€‰๐‘š โ‰  ๐‘› Givenโ€‰that ๐‘š = 5 and ๐‘› = 6 โˆต ๐‘š โ‰  ๐‘› So, โ€‰numberโ€‰ofโ€‰mappingsโ€‰ = โ€‰0 Q8.Set A has 3 elements and the set B has 4 elements. Then the number of injective mappings that can be defined from A to B is A. 144 B. 12 C. 24 D. 64 Answer: C Explanation: ๐‘ป๐’‰๐’† ๐’•๐’๐’•๐’‚๐’ ๐’๐’–๐’Ž๐’ƒ๐’†๐’“ ๐’๐’‡ ๐’Š๐’๐’‹๐’†๐’„๐’•๐’Š๐’—๐’† ๐’Ž๐’‚๐’‘๐’‘๐’Š๐’๐’ˆ๐’” ๐’‡๐’“๐’๐’Ž ๐’•๐’‰๐’† ๐’”๐’†๐’• ๐’„๐’๐’๐’•๐’‚๐’Š๐’๐’Š๐’๐’ˆ ๐Ÿ‘ ๐’†๐’๐’†๐’Ž๐’†๐’๐’•๐’” ๐’Š๐’๐’•๐’ ๐’•๐’‰๐’† ๐’”๐’†๐’• ๐’„๐’๐’๐’•๐’‚๐’Š๐’๐’Š๐’๐’ˆ ๐Ÿ’ ๐’†๐’๐’†๐’Ž๐’†๐’๐’•๐’” ๐’Š๐’”๐Ÿ’๐‘ท๐Ÿ‘ = ๐Ÿ’! = ๐Ÿ๐Ÿ’. Q9.Let N be the set of natural numbers and the function f : N โ†’ N be defined by f(n) = 2n + 3. Then f is A. surjective B. injective C. bijective D. none of these Answer: B Explanation: ๐’‡(๐’๐Ÿ) = ๐’‡(๐’๐Ÿ) โ‡’ ๐Ÿ(๐’๐Ÿ) + ๐Ÿ‘ = ๐Ÿ(๐’๐Ÿ) + ๐Ÿ‘ โ‡’ ๐’๐Ÿ = ๐’๐Ÿ ๐‘ป๐’‰๐’†๐’“๐’†๐’‡๐’๐’“๐’† ๐’‡ ๐’Š๐’” ๐’Š๐’๐’‹๐’†๐’„๐’•๐’Š๐’—๐’†, ๐‘ฉ๐’–๐’• ๐’‚๐’” ๐’‡(๐’) โ‰  ๐Ÿโ€‰๐’๐’“โ€‰๐Ÿโ€‰๐’๐’“โ€‰๐Ÿ‘โ€‰๐’๐’“โ€‰๐Ÿ’ ๐’˜๐’‰๐’Š๐’„๐’‰ ๐’๐’„๐’„๐’–๐’“๐’” ๐’Š๐’ ๐’•๐’‰๐’† ๐’„๐’๐’…๐’๐’Ž๐’‚๐’Š๐’ ๐’๐’‡ ๐‘ต, ๐’”๐’ ๐’‡(๐’) = ๐Ÿ๐’ + ๐Ÿ‘ ๐’Š๐’” ๐’๐’๐’• ๐’”๐’–๐’“๐’‹๐’†๐’„๐’•๐’Š๐’—๐’†. Q10. ๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ tan(1 2 sinโˆ’1 3 4 ) ๐‘–๐‘ : A. 3+โˆš7 4 B. 3โˆ’โˆš7 4 C. 4+โˆš7 3 D. 4โˆ’โˆš7 3 Answer: D Explanation: Let, tan( 1 2 sinโˆ’1 3 4 ) = ๐‘ฆ โ‡’ 1 2 sinโˆ’1 3 4 = tanโˆ’1๐‘ฆ โ‡’ sinโˆ’1 3 4 = 2tanโˆ’1๐‘ฆ โ‡’ sinโˆ’1 3 4 = tanโˆ’1( 2๐‘ฆ 1 โˆ’ ๐‘ฆ2 ) โ‡’ tanโˆ’1 3 โˆš7 = tanโˆ’1( 2๐‘ฆ 1 โˆ’ ๐‘ฆ2 ) โ‡’ 3 โˆš7 = ( 2๐‘ฆ 1 โˆ’ ๐‘ฆ2 ) โ‡’ 3๐‘ฆ2 + 2โˆš7 โˆ’ 3 = 0 Q11. ๐ผ๐‘“ sinโˆ’1( 2๐‘Ž 1+๐‘Ž2) + cosโˆ’1(1โˆ’๐‘Ž2 1+๐‘Ž2) = tanโˆ’1( 2๐‘ฅ 1โˆ’๐‘ฅ2) ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐‘Ž, ๐‘ฅ โˆˆ]0,1[, ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘ฅ ๐‘–๐‘ : A. 0 B. ๐‘Ž 2 C. 2๐‘Ž 1+๐‘Ž2 D. 2๐‘Ž 1โˆ’๐‘Ž2 Answer: D Explanation: Letโ€‰๐‘Ž = tan๐œƒ Then sinโˆ’1( 2๐‘Ž 1 โˆ’ ๐‘Ž2 ) + cosโˆ’1( 1 โˆ’ ๐‘Ž2 1 + ๐‘Ž2 ) = tanโˆ’1( 2๐‘ฅ 1 โˆ’ ๐‘ฅ2 ) โ‡’ sinโˆ’1( 2tan๐œƒ 1 โˆ’ tan2๐œƒ ) + cosโˆ’1( 1 โˆ’ tan2๐œƒ 1 + tan2๐œƒ ) = tanโˆ’1( 2๐‘ฅ 1 โˆ’ ๐‘ฅ2 ) โ‡’ sinโˆ’1sin2๐œƒ + cosโˆ’1cos2๐œƒ = tanโˆ’1( 2๐‘ฅ 1 โˆ’ ๐‘ฅ2 ) โ‡’ 4๐œƒ = tanโˆ’1( 2๐‘ฅ 1 โˆ’ ๐‘ฅ2 ) โ‡’ 4tanโˆ’1๐‘Ž = tanโˆ’1( 2๐‘ฅ 1 โˆ’ ๐‘ฅ2 ) โ‡’ 2 โ‹… 2tanโˆ’1๐‘Ž = tanโˆ’1( 2๐‘ฅ 1 โˆ’ ๐‘ฅ2 ) โ‡’ 2 โ‹… tanโˆ’1( 2๐‘Ž 1 โˆ’ ๐‘Ž2 ) = tanโˆ’1( 2๐‘ฅ 1 โˆ’ ๐‘ฅ2 ) โ‡’ tanโˆ’1( 2 โ‹… 2๐‘Ž 1 โˆ’ ๐‘Ž2 1 โˆ’ ( 2๐‘Ž 1 โˆ’ ๐‘Ž2)2 ) = tanโˆ’1( 2๐‘ฅ 1 โˆ’ ๐‘ฅ2 ) โ‡’ 4๐‘Ž 1 โˆ’ ๐‘Ž2 1 โˆ’ ( 2๐‘Ž 1 โˆ’ ๐‘Ž2)2 = 2๐‘ฅ 1 โˆ’ ๐‘ฅ2 โ‡’ ๐‘ฅ = 2๐‘Ž 1 โˆ’ ๐‘Ž2 Q12. ๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘ฅ ๐‘“๐‘œ๐‘Ÿ tanโˆ’12๐‘ฅ + tanโˆ’13๐‘ฅ = ๐œ‹ 4 ๐‘–๐‘ : A. 1 6 B. โˆ’ 1 6 C. -1 D. 1 Answer: A Explanation: ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ ๐Ÿ‘ ) + ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ ๐Ÿ“ ) + ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ ๐Ÿ• ) + ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ ๐Ÿ– ) = ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ ๐Ÿ‘ + ๐Ÿ ๐Ÿ“ ๐Ÿ โˆ’ ๐Ÿ ๐Ÿ‘ โ‹… ๐Ÿ ๐Ÿ“ ) + ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ ๐Ÿ• + ๐Ÿ ๐Ÿ– ๐Ÿ โˆ’ ๐Ÿ ๐Ÿ• โ‹… ๐Ÿ ๐Ÿ– ) = ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ– ๐Ÿ๐Ÿ’ ) + ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ๐Ÿ“ ๐Ÿ“๐Ÿ“ ) = ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ’ ๐Ÿ• ) + ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ‘ ๐Ÿ๐Ÿ ) = ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ’ ๐Ÿ• + ๐Ÿ‘ ๐Ÿ๐Ÿ ๐Ÿ โˆ’ ๐Ÿ’ ๐Ÿ• โ‹… ๐Ÿ‘ ๐Ÿ๐Ÿ ) = ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ’๐Ÿ’โ€‰ + โ€‰๐Ÿ๐Ÿ ๐Ÿ•๐Ÿ• ๐Ÿ•๐Ÿ•โ€‰ โˆ’ โ€‰๐Ÿ๐Ÿ ๐Ÿ•๐Ÿ• ) = ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ’๐Ÿ’ + ๐Ÿ๐Ÿ ๐Ÿ•๐Ÿ• โˆ’ ๐Ÿ๐Ÿ ) = ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ”๐Ÿ“ ๐Ÿ”๐Ÿ“ ) = ๐ญ๐š๐งโˆ’๐Ÿ(๐Ÿ) = ๐… ๐Ÿ’ Q15. ๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ tan(2tanโˆ’1 1 5 ) ๐‘–๐‘ : A. 7 12 B. 5 12 C. 9 12 D. 5 9 Answer: B Explanation: ๐‘ผ๐’”๐’Š๐’๐’ˆ ๐’Š๐’…๐’†๐’๐’•๐’Š๐’•๐’š ๐Ÿ๐ญ๐š๐งโˆ’๐Ÿ๐’™ = ๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ๐’™ ๐Ÿ โˆ’ ๐’™๐Ÿ ) ๐’‚๐’”, ๐ญ๐š๐ง(๐Ÿ๐ญ๐š๐งโˆ’๐Ÿ ๐Ÿ ๐Ÿ“ ) = ๐ญ๐š๐ง(๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ ร— ๐Ÿ ๐Ÿ“ ๐Ÿ โˆ’ ( ๐Ÿ ๐Ÿ“ )๐Ÿ )) = ๐ญ๐š๐ง(๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ ๐Ÿ“ ๐Ÿ โˆ’ ๐Ÿ ๐Ÿ๐Ÿ“ )) = ๐ญ๐š๐ง(๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ ๐Ÿ“ ๐Ÿ๐Ÿ’ ๐Ÿ๐Ÿ“ )) = ๐ญ๐š๐ง(๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ ๐Ÿ๐Ÿ ๐Ÿ“ )) = ๐ญ๐š๐ง(๐ญ๐š๐งโˆ’๐Ÿ( ๐Ÿ“ ๐Ÿ๐Ÿ )) = ๐Ÿ“ ๐Ÿ๐Ÿ Q16. ๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ sin(secโˆ’1 17 15 ) ๐‘–๐‘ : A. 9 17 B. 8 17 C. 17 8 D. 8 15 Answer: B Explanation: ๐‘บ๐’Š๐’๐’„๐’†, ๐ฌ๐ž๐œโˆ’๐Ÿ ๐Ÿ๐Ÿ• ๐Ÿ๐Ÿ“ = ๐ฌ๐ž๐œโˆ’๐Ÿ ๐’‰ ๐’ƒ , So,In right angle triangle Use Pythagoras theorem to find unknown side as, ๐‘2 + ๐‘2 = โ„Ž2 โ‡’ ๐‘2 = โ„Ž2 โˆ’ ๐‘2 โ‡’ ๐‘2 = 172 โˆ’ 152 โ‡’ ๐‘2 = 289 โˆ’ 225 โ‡’ ๐‘2 = 64 โ‡’ ๐‘ = 8 ๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ , ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘› sinโˆ’1 ๐‘ โ„Ž = secโˆ’1 โ„Ž ๐‘ sin(secโˆ’1 17 15 ) = sin(sinโˆ’1 8 17 ) = 8 17 Q17. ๐‘‡โ„Ž๐‘’ ๐‘๐‘Ÿ๐‘–๐‘›๐‘๐‘–๐‘๐‘Ž๐‘™ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ cosโˆ’1(cos 7๐œ‹ 6 ) ๐‘–๐‘ : A. 7๐œ‹ 6 B. cos ๐œ‹ 6 C. 5๐œ‹ 6 D. ๐œ‹ 3 Answer: C Explanation: Since 7ฯ€/6 does not lie between 0 and ฯ€. Therefore cosโˆ’1(cos 7๐œ‹ 6 ) โ‰  7๐œ‹ 6 To covert 7ฯ€/6 into a value that lies between 0 and ฯ€. Let us proceed as, cosโˆ’1(cos 7๐œ‹ 6 ) โ‡’ cosโˆ’1(cos(๐œ‹ + ๐œ‹ 6 )) (๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“cos(๐œ‹ + ๐œƒ) = cos(๐œ‹ โˆ’ ๐œƒ)) โ‡’ cosโˆ’1(cos(๐œ‹ โˆ’ ๐œ‹ 6 )) โ‡’ 5๐œ‹ 6 Answer: B Explanation: This can be solved as, tanโˆ’1tan 9๐œ‹ 8 โ‡’ tanโˆ’1tan(๐œ‹ + ๐œ‹ 8 ) โ‡’ tanโˆ’1tan( ๐œ‹ 8 ) โ‡’ ๐œ‹ 8 Q22. ๐‘‡โ„Ž๐‘’ ๐‘‘๐‘œ๐‘š๐‘Ž๐‘–๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› cosโˆ’1(2๐‘ฅ โˆ’ 1) ๐‘–๐‘ : A. [0,1] B. [-1,1] C. (-1,1) D. (0, ฯ€) Answer: A Explanation: This can be solved as, ๐‘“(๐‘ฅ) = cosโˆ’1(2๐‘ฅ โˆ’ 1) โ‡’ โˆ’1 โ‰ค 2๐‘ฅ โˆ’ 1 โ‰ค 1 โ‡’ 0 โ‰ค 2๐‘ฅ โ‰ค 2 โ‡’ 0 โ‰ค ๐‘ฅ โ‰ค 1 โ‡’ ๐‘ฅ โˆˆ [0,1] Q23. ๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ 2secโˆ’12 + sinโˆ’1(1 2 ) ๐‘–๐‘ : A. ๐œ‹ 6 B. 5๐œ‹ 6 C. 7๐œ‹ 6 D. 1 Answer: B Explanation: This can be solved as, 2secโˆ’12 + sinโˆ’1( 1 2 ) = 2secโˆ’1sec( ๐œ‹ 3 ) + sinโˆ’1sin ๐œ‹ 6 = 2( ๐œ‹ 3 ) + ๐œ‹ 6 = 5๐œ‹ 6 Q24. ๐‘‡โ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘คโ„Ž๐‘–๐‘โ„Ž [1 ๐‘ฅ 1][ 1 3 2 2 5 1 15 3 2 ][ 1 2 ๐‘ฅ ] = O ๐‘–๐‘ : A. x=โˆ’2, โˆ’14 B. x=2,14x C. x=โˆ’2, 14 D. x=2, โˆ’14 Answer: A Explanation: This can be solved as, [1 ๐‘ฅ 1][ 1 3 2 2 5 1 15 3 2 ][ 1 2 ๐‘ฅ ] = O [16 + 2๐‘ฅ 5๐‘ฅ + 6 4 + ๐‘ฅ][ 1 2 ๐‘ฅ ] = O [1 + 2๐‘ฅ + 15 3 + 5๐‘ฅ + 3 2 + ๐‘ฅ + 2][ 1 2 ๐‘ฅ ] = O [16 + 2๐‘ฅ + 10๐‘ฅ + 12 + ๐‘ฅ2 + 4๐‘ฅ] = O [๐‘ฅ2 + 16๐‘ฅ + 28] = O [๐‘ฅ2 + 2๐‘ฅ + 14๐‘ฅ + 28] = O (๐‘ฅ + 2)(๐‘ฅ + 14) = O ๐‘ฅ = โˆ’2, โˆ’14 Q25. ๐ผ๐‘“ ๐ผA = [ 2 0 โˆ’1 5 1 0 0 1 3 ], ๐‘กโ„Ž๐‘’๐‘› ๐‘–๐‘›๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’ ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ ๐‘–๐‘ : A. [ 3 1 1 5 6 โˆ’5 5 โˆ’2 15 ] B. [ 3 1 1 3 6 โˆ’5 5 โˆ’2 15 ] C. [ 3 1 1 15 6 โˆ’5 5 โˆ’2 2 ] D. [ 3 โˆ’1 1 โˆ’15 6 โˆ’5 5 โˆ’2 2 ] Answer: D Explanation: We have given A = [ 2 0 โˆ’1 5 1 0 0 1 3 ] Rewrite it as, [ 2 0 โˆ’1 5 1 0 0 1 3 ] = [ 1 0 0 0 1 0 0 0 1 ]A ApplyingR1 โ†’ R1 2 [ 1 0 โˆ’ 1 2 5 1 0 0 1 3 ] = [ 1 2 0 0 0 1 0 0 0 1 ]A ApplyingR2 โ†’ R2 โˆ’ 5R1 [ 1 0 โˆ’ 1 2 0 1 5 2 0 1 3 ] = [ 1 2 0 0 โˆ’ 5 2 1 0 0 0 1 ]A Q26. ๐ผ๐‘“ ๐ด ๐‘–๐‘  ๐‘ ๐‘ž๐‘ข๐‘Ž๐‘Ÿ๐‘’ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ ๐‘ ๐‘ข๐‘โ„Ž ๐‘กโ„Ž๐‘Ž๐‘ก ๐ด2 = ๐ด, ๐‘‡โ„Ž๐‘’๐‘› (๐ผ + ๐ด) 3 =? A. 7A+I B. 7Aโˆ’I C. 5A+2I D. 7A+2I Answer: A Q30. ๐‘‡โ„Ž๐‘’ ๐‘๐‘œ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘œ๐‘“ ๐‘Ž12 ๐‘–๐‘› ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ | 2 โˆ’3 5 6 0 4 1 5 โˆ’7 | ๐‘–๐‘ : A. 46 B. -46 C. 12 D. 18 Answer: A Explanation: ๐‘ช๐’๐’‡๐’‚๐’„๐’•๐’๐’“ ๐’๐’‡ ๐’‚๐Ÿ๐Ÿ ๐’Š๐’”: ๐‘จ๐Ÿ๐Ÿ = (โˆ’๐Ÿ)๐Ÿ+๐Ÿ| ๐Ÿ” ๐Ÿ’ ๐Ÿ โˆ’๐Ÿ• | ๐‘จ๐Ÿ๐Ÿ = โˆ’(โˆ’๐Ÿ’๐Ÿ โˆ’ ๐Ÿ’) ๐‘จ๐Ÿ๐Ÿ = โˆ’(โˆ’๐Ÿ’๐Ÿ”) ๐‘จ๐Ÿ๐Ÿ = ๐Ÿ’๐Ÿ” Q31.If A and B are two matrices of the order 3 ร— m and 3 ร— n, respectively, and m = n, then the order of matrix (5A โ€“ 2B) is: A. m ร— 3 B. 3 ร— 3 C. m ร— n D. 3 ร— n Answer: D Explanation: ๐‘ฐ๐’‡ ๐‘จ๐Ÿ‘ร— ๐’Ž ๐’‚๐’๐’… ๐‘ฉ๐Ÿ‘ ร— ๐’๐’‚๐’“๐’† ๐’•๐’˜๐’ ๐’Ž๐’‚๐’•๐’“๐’Š๐’„๐’†๐’” ๐‘ฐ๐’‡ ๐’Ž = ๐’ , ๐‘ป๐’‰๐’†๐’ ๐‘จ ๐’‚๐’๐’… ๐‘ฉ ๐’‰๐’‚๐’—๐’† ๐’”๐’‚๐’Ž๐’† ๐’๐’“๐’…๐’†๐’“ ๐’‚๐’” ๐Ÿ‘ ร— ๐’ ๐’†๐’‚๐’„๐’‰. ๐‘บ๐’ ๐’•๐’‰๐’† ๐’๐’“๐’…๐’†๐’“ ๐’๐’‡ (๐Ÿ“๐‘จ โ€“ ๐Ÿ๐‘ฉ) ๐’”๐’‰๐’๐’–๐’๐’… ๐’ƒ๐’† ๐’”๐’‚๐’Ž๐’† ๐’‚๐’” ๐Ÿ‘ ร— ๐’ Q32.Total number of possible matrices of order 3 ร— 3 with each entry 2 or 0, is: A. 9 B. 27 C. 81 D. 512 Answer: D Explanation: ๐‘ป๐’๐’•๐’‚๐’ ๐’๐’–๐’Ž๐’ƒ๐’†๐’“ ๐’๐’‡ ๐’‘๐’๐’”๐’”๐’Š๐’ƒ๐’๐’† ๐’Ž๐’‚๐’•๐’“๐’Š๐’„๐’†๐’” ๐’๐’‡ ๐’๐’“๐’…๐’†๐’“ ๐Ÿ‘ ร— ๐Ÿ‘ ๐’˜๐’Š๐’•๐’‰ ๐’†๐’‚๐’„๐’‰ ๐’†๐’๐’•๐’“๐’š ๐Ÿ ๐’๐’“ ๐ŸŽ ๐’Š๐’” ๐Ÿ๐Ÿ— = ๐Ÿ“๐Ÿ๐Ÿ Q33.If A and B are symmetric matrices of the same order, then (ABโ€ฒ โ€“ BAโ€ฒ) is a: A. Skew symmetric matrix B. Null matrix C. Symmetric matrix D. None of these Answer: A Explanation: Since (ABโ€ฒ โ€“BAโ€ฒ)โ€ฒ = (ABโ€ฒ)โ€ฒ โ€“ (BAโ€ฒ)โ€ฒ Q34. ๐ผ๐‘“ A = [1 3 5 2 7 9 ] ๐‘Ž๐‘›๐‘‘ B = [ 1 5 3 2 0 6 ], ๐‘กโ„Ž๐‘’๐‘› A. Only AB is defined B. Only BA is defined C. AB and BA both are defined D. AB and BA both are not defined. Answer: C Explanation: ๐‘ฏ๐’†๐’“๐’† ๐‘จ = [๐’‚๐’Š๐’‹]๐Ÿร—๐Ÿ‘๐’‚๐’๐’… ๐‘ฉ = [๐’ƒ๐’Š๐’‹]๐Ÿ‘ร—๐Ÿ To multiply two marices, the necessary condition is the number of columns in first marix will be equal to number of rows in second matrix. Since both AB and BA are fulfilling this condition., so both AB and BA are defined. Q35.If A and B are square matrices of the same order, then (A + B) (A โ€“ B) is equal to: A. A2โˆ’ B2 B. A2โˆ’ BAโˆ’ ABโˆ’B2 C. A2โˆ’ B2+BAโˆ’AB D. A2โˆ’BA+B2+AB Answer: C Explanation: This can be solved as, (A + B) (A โ€“ B) = A (A โ€“ B) + B (A โ€“ B) = A2โˆ’ B2+BAโˆ’AB Q36.Using properties of determinants, calculate the value of: | 1 ๐‘ฅ ๐‘ฅ2 ๐‘ฅ2 1 ๐‘ฅ ๐‘ฅ ๐‘ฅ2 1 | A. (1โˆ’x3)2 B. (1โˆ’x3) C. (1โˆ’x3)3 D. (1โˆ’x2)3 Answer: A Explanation: Explanation: = | ๐’š + ๐’Œ ๐’š ๐’š ๐’š ๐’š + ๐’Œ ๐’š ๐’š ๐’š ๐’š + ๐’Œ | ๐‘น๐Ÿ โ†’ ๐‘น๐Ÿ + ๐‘น๐Ÿ + ๐‘น๐Ÿ‘ = | ๐Ÿ‘๐’š + ๐’Œ ๐Ÿ‘๐’š + ๐’Œ ๐Ÿ‘๐’š + ๐’Œ ๐’š ๐’š + ๐’Œ ๐’š ๐’š ๐’š ๐’š + ๐’Œ | = (๐Ÿ‘๐’š + ๐’Œ)| ๐Ÿ ๐Ÿ ๐Ÿ ๐’š ๐’š + ๐’Œ ๐’š ๐’š ๐’š ๐’š + ๐’Œ | ๐‘ช๐Ÿ โ†’ ๐‘ช๐Ÿ โˆ’ ๐‘ช๐Ÿ ๐‘ช๐Ÿ‘ โ†’ ๐‘ช๐Ÿ‘ โˆ’ ๐‘ช๐Ÿ = (๐Ÿ‘๐’š + ๐’Œ)| ๐Ÿ ๐ŸŽ ๐ŸŽ ๐’š ๐’Œ ๐ŸŽ ๐’š ๐ŸŽ ๐’Œ | = (๐Ÿ‘๐’š + ๐’Œ)(๐’Œ๐Ÿ โˆ’ ๐ŸŽ) = ๐’Œ๐Ÿ(๐Ÿ‘๐’š + ๐’Œ) Q39.Using properties of determinants, calculate the value of: | ๐‘ + ๐‘ ๐‘Ž ๐‘Ž ๐‘ ๐‘ + ๐‘Ž ๐‘ ๐‘ ๐‘ ๐‘Ž + ๐‘ | A. 2abc B. 4abc C. 3abc D. 5abc Answer: B Explanation: | ๐’ƒ + ๐’„ ๐’‚ ๐’‚ ๐’ƒ ๐’„ + ๐’‚ ๐’ƒ ๐’„ ๐’„ ๐’‚ + ๐’ƒ | ๐‘น๐Ÿ โ†’ ๐‘น๐Ÿ + ๐‘น๐Ÿ + ๐‘น๐Ÿ‘ = | ๐Ÿ(๐’ƒ + ๐’„) ๐Ÿ(๐’‚ + ๐’„) ๐Ÿ(๐’‚ + ๐’ƒ) ๐’ƒ ๐’„ + ๐’‚ ๐’ƒ ๐’„ ๐’„ ๐’‚ + ๐’ƒ | ๐“๐š๐ค๐ข๐ง๐  ๐Ÿ ๐š๐ฌ ๐œ๐จ๐ฆ๐ฆ๐จ๐ง = ๐Ÿ | ๐’ƒ + ๐’„ ๐’‚ + ๐’„ ๐’‚ + ๐’ƒ ๐’ƒ ๐’„ + ๐’‚ ๐’ƒ ๐’„ ๐’„ ๐’‚ + ๐’ƒ | ๐‘น๐Ÿ โ†’ ๐‘น๐Ÿ โˆ’ ๐‘น๐Ÿ = ๐Ÿ | ๐’„ ๐ŸŽ ๐’‚ ๐’ƒ ๐’„ + ๐’‚ ๐’ƒ ๐’„ ๐’„ ๐’‚ + ๐’ƒ | = ๐Ÿ[๐’„{(๐’ƒ + ๐’‚)(๐’„ + ๐’‚) โˆ’ ๐’ƒ๐’„} โˆ’ ๐ŸŽ + ๐’‚{๐’ƒ๐’„ โˆ’ ๐’„(๐’„ + ๐’‚)}] = ๐Ÿ(๐’‚๐’ƒ๐’„ + ๐’‚๐’ƒ๐’„) = ๐Ÿ’๐’‚๐’ƒ๐’„ Q40.Calculate the area between the given points: Aโ€‰(a,b+c),Bโ€‰(b,c+a),Cโ€‰(c,a+b)Aโ€‰(a,b+c),Bโ€‰(b,c+a),Cโ€‰(c,a+b) A. 0 B. 1 C. 2 D. 3 Answer: A Explanation: Here, โ€‰coordinatesโ€‰ofโ€‰points, โ€‰๐ด: (๐‘Ž, ๐‘ + ๐‘); โ€‰๐ต: (๐‘, ๐‘ + ๐‘Ž); โ€‰๐ถ: (๐‘, ๐‘Ž + ๐‘) ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐›ฅ๐ด๐ต๐ถ ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘Ž๐‘  ๐›ฅ = 1 2 | ๐‘Ž ๐‘ + ๐‘ 1 ๐‘ ๐‘ + ๐‘Ž 1 ๐‘ ๐‘Ž + ๐‘ 1 | ๐‘…2 โ†’ ๐‘…2 โˆ’ ๐‘…1 ๐‘…3 โ†’ ๐‘…3 โˆ’ ๐‘…1 = 1 2 | ๐‘Ž ๐‘ + ๐‘ 1 ๐‘ โˆ’ ๐‘Ž ๐‘Ž โˆ’ ๐‘ 0 ๐‘ โˆ’ ๐‘Ž ๐‘Ž โˆ’ ๐‘ 0 | = 1 2 (๐‘Ž โˆ’ ๐‘)(๐‘Ž โˆ’ ๐‘)| ๐‘Ž ๐‘ + ๐‘ 1 โˆ’1 1 0 โˆ’1 1 0 | = 1 2 (๐‘Ž โˆ’ ๐‘)(๐‘Ž โˆ’ ๐‘)[โˆ’1 + 1] = 0 Hence, the points A, B, and C are collinear. " Q41. ๐‘‡โ„Ž๐‘’ ๐‘š๐‘Ž๐‘”๐‘›๐‘–๐‘ก๐‘ข๐‘‘๐‘’ ๐‘œ๐‘“ ๐‘‘๐‘’๐‘ก๐‘’๐‘Ÿ๐‘š๐‘–๐‘›๐‘Ž๐‘›๐‘ก | ๐‘2 โˆ’ ๐‘Ž๐‘ ๐‘ โˆ’ ๐‘ ๐‘๐‘ โˆ’ ๐‘Ž๐‘ ๐‘Ž๐‘ โˆ’ ๐‘Ž2 ๐‘Ž โˆ’ ๐‘ ๐‘2 โˆ’ ๐‘Ž๐‘ ๐‘๐‘ โˆ’ ๐‘Ž๐‘ ๐‘ โˆ’ ๐‘Ž ๐‘Ž๐‘ โˆ’ ๐‘Ž2 | ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘  ๐‘ก๐‘œ: A. abc (b โ€“ c) (c โ€“ a) (a โ€“ b) B. (b โ€“ c) (c โ€“ a) (a โ€“ b) C. (a + b + c) (b โ€“ c) (c โ€“ a) (a โ€“ b) D. 0 Answer: D Explanation: This can be solved as, A. 1 2 B. โˆš 3 2 C. โˆš2 D. 2โˆš 3 4 Answer: A Explanation: ๐†๐ข๐ฏ๐ž๐ง, โ€‰๐œŸ = | ๐Ÿ ๐Ÿ ๐Ÿ ๐Ÿ ๐Ÿ + ๐ฌ๐ข๐ง๐œฝ ๐Ÿ ๐Ÿ + ๐œ๐จ๐ฌ๐œฝ ๐Ÿ ๐Ÿ | [๐‚๐Ÿ โ†’ ๐‚๐Ÿ โˆ’ ๐‚๐Ÿ‘โ€‰โ€‰๐š๐ง๐โ€‰๐‚๐Ÿ โ†’ ๐‚๐Ÿ โˆ’ ๐‚๐Ÿ‘โ€‰โ€‰โ€‰] โ‡’ | ๐ŸŽ ๐ŸŽ ๐Ÿ ๐ŸŽ ๐ฌ๐ข๐ง๐œฝ ๐Ÿ ๐œ๐จ๐ฌ๐œฝ ๐ŸŽ ๐Ÿ | = โˆ’๐ฌ๐ข๐ง๐œฝ๐œ๐จ๐ฌ๐œฝ = โˆ’๐ฌ๐ข๐ง๐Ÿ๐œฝ ๐Ÿ ๐๐จ๐ฐ, โ€‰๐ฌ๐ข๐ง๐Ÿ๐œฝโ€‰๐ฅ๐ข๐ž๐ฌโ€‰๐›๐ž๐ญ๐ฐ๐ž๐ž๐งโ€‰ โˆ’ ๐Ÿโ€‰๐š๐ง๐โ€‰๐Ÿ, โ€‰๐ก๐ž๐ง๐œ๐žโ€‰๐ฆ๐š๐ฑ๐ข๐ฆ๐ฎ๐ฆโ€‰๐ฏ๐š๐ฅ๐ฎ๐žโ€‰ = โ€‰ ๐Ÿ ๐Ÿ Q45.The area of a triangle with vertices (โ€“3, 0), (3, 0) and (0, k) is 9 sq. units. The value of k will be A. 9 B. 3 C. -9 D. 6 Answer: B Explanation: This can be solved as, Areaโ€‰ofโ€‰triangleโ€‰ = โ€‰ 1 2 | โˆ’3 0 1 3 0 1 0 ๐‘˜ 1 | โ‡’ 9โ€‰ = โ€‰ 1 2 (โˆ’3(0 โˆ’ ๐‘˜) โˆ’ 0 + 1(3๐‘˜ โˆ’ 0)) โ‡’ 18โ€‰ = โ€‰3๐‘˜ + 3๐‘˜ โ‡’ ๐‘˜ = 3 Q46.If A is a matrix of order 3 ร— 3, then |3A| = A. 27|A| B. 3|A| C. 9|A| D. |27A| Answer: A Explanation: ๐‘ญ๐’๐’“ ๐’‚ ๐’”๐’’๐’–๐’‚๐’“๐’† ๐’Ž๐’‚๐’•๐’“๐’Š๐’™ ๐‘จ ๐’๐’‡ ๐’๐’“๐’…๐’†๐’“๐’, |๐’Œ๐‘จ| = ๐’Œ๐’|๐‘จ| ๐‘ฐ๐’‡ ๐‘จ ๐’Š๐’” ๐’‚ ๐’Ž๐’‚๐’•๐’“๐’Š๐’™ ๐’๐’‡ ๐’๐’“๐’…๐’†๐’“ ๐Ÿ‘ ร— ๐Ÿ‘ ๐‘ป๐’‰๐’†๐’, |๐Ÿ‘๐‘จ| = ๐Ÿ‘๐Ÿ‘|๐‘จ| = ๐Ÿ๐Ÿ• | ๐‘จ|. Q47. ๐ผ๐‘“ |2๐‘ฅ 5 8 ๐‘ฅ | = |6 โˆ’2 7 3 |, ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘ฅ ๐‘–๐‘ : A. +3 B. ยฑ 3 C. ยฑ 6 D. +6 Answer: C Explanation: This can be solved as, | 2๐‘ฅ 5 8 ๐‘ฅ | = | 6 โˆ’2 7 3 | 2๐‘ฅ2 โˆ’ 40 = 18 + 14 2๐‘ฅ2 = 18 + 14 + 40 2๐‘ฅ2 = 72 ๐‘ฅ2 = 36 ๐‘ฅ = ยฑ6 Q48. ๐ผ๐‘“ ๐‘ฅm๐‘ฆn = (๐‘ฅ + ๐‘ฆ) m+n , ๐‘กโ„Ž๐‘’๐‘› ๐‘คโ„Ž๐‘Ž๐‘ก ๐‘–๐‘  d๐‘ฆ d๐‘ฅ ? A. d๐‘ฆ d๐‘ฅ = โˆ’๐‘ฆ ๐‘ฅ B. d๐‘ฆ d๐‘ฅ = ๐‘ฆ ๐‘ฅ C. d๐‘ฆ d๐‘ฅ = ๐‘ฅ ๐‘ฆ D. None of these Answer: B Explanation: ๐’™๐’Ž๐’š๐’ = (๐’™ + ๐’š)๐’Ž+๐’ ๐“๐š๐ค๐ข๐ง๐  ๐ฅ๐จ๐  ๐›๐จ๐ญ๐ก ๐ฌ๐ข๐๐ž๐ฌ ๐’Ž๐ฅ๐จ๐ ๐’™ + ๐’๐ฅ๐จ๐ ๐’š = (๐’Ž + ๐’)๐ฅ๐จ๐ (๐’™ + ๐’š) ๐Ž๐ง ๐๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐ญ๐ข๐š๐ญ๐ข๐จ๐ง ๐’Ž ๐’™ + ๐’ ๐’š . ๐’…๐’š ๐’…๐’™ = (๐’Ž + ๐’)[ ๐Ÿ ๐’™+๐’š . (๐Ÿ + ๐’…๐’š ๐’…๐’™ )] ๐’Ž ๐’™ + ๐’ ๐’š . ๐’…๐’š ๐’…๐’™ = ๐’Ž+๐’ ๐’™+๐’š + ๐’Ž+๐’ ๐’™+๐’š . ๐’…๐’š ๐’…๐’™ ( ๐’ ๐’š โˆ’ ๐’Ž+๐’ ๐’™+๐’š ) ๐’…๐’š ๐’…๐’™ = ๐’Ž+๐’ ๐’™+๐’š โˆ’ ๐’Ž ๐’™ ( ๐’๐’™+๐’๐’šโˆ’๐’Ž๐’šโˆ’๐’๐’š ๐’š(๐’™+๐’š) ) ๐’…๐’š ๐’…๐’™ = ๐’Ž๐’™+๐’๐’™โˆ’๐’Ž๐’™โˆ’๐’Ž๐’š ๐’™(๐’™+๐’š) ( ๐’๐’™โˆ’๐’Ž๐’š ๐’š ) ๐’…๐’š ๐’…๐’™ = ๐’๐’™โˆ’๐’Ž๐’š ๐’™ ๐’…๐’š ๐’…๐’™ = ๐’š ๐’™ Q49. ๐ผ๐‘“ ๐‘ฅ = ๐‘Ž(cos๐‘ก + ๐‘กsin๐‘ก), ๐‘ฆ = ๐‘Ž(sin๐‘ก โˆ’ ๐‘กcos๐‘ก), ๐‘กโ„Ž๐‘’๐‘› ๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘’ d 2 ๐‘ฆ d๐‘ก2 A. d2๐‘ฆ d๐‘ก2 = cos๐‘ก+sin๐‘ก cos๐‘กโˆ’๐‘กsin๐‘ก B. d2๐‘ฆ d๐‘ก2 = ๐‘กcos๐‘ก+sin๐‘ก cos๐‘กโˆ’๐‘กsin๐‘ก C. d2๐‘ฆ d๐‘ก2 = ๐‘กcos๐‘ก+sin๐‘ก cos๐‘กโˆ’sin๐‘ก D. d2๐‘ฆ d๐‘ก2 = ๐‘กcos๐‘ก+๐‘กsin๐‘ก cos๐‘กโˆ’๐‘กsin๐‘ก Answer: B Explanation: ๐’™ = ๐’‚(๐œ๐จ๐ฌ๐’• + ๐’•๐ฌ๐ข๐ง๐’•), ๐’š = ๐’‚(๐ฌ๐ข๐ง๐’• โˆ’ ๐’•๐œ๐จ๐ฌ๐’•) ๐’™ = ๐’‚(๐œ๐จ๐ฌ๐’• + ๐’•๐ฌ๐ข๐ง๐’•) ๐Ž๐ง ๐๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐ญ๐ข๐š๐ญ๐ข๐จ๐ง ๐’…๐’™ ๐’…๐’• = ๐’‚[โˆ’๐ฌ๐ข๐ง๐’• + ๐’•๐œ๐จ๐ฌ๐’• + ๐ฌ๐ข๐ง๐’•] ๐’…๐’™ ๐’…๐’• = ๐’‚(๐’•๐œ๐จ๐ฌ๐’•) ๐’…๐Ÿ๐’™ ๐’…๐’•๐Ÿ = ๐’‚[๐œ๐จ๐ฌ๐’• โˆ’ ๐’•๐ฌ๐ข๐ง๐’•]โ€‰โ€‰โ€‰โ€‰. . . (๐Ÿ) ๐’š = ๐’‚(๐ฌ๐ข๐ง๐’• โˆ’ ๐’•๐œ๐จ๐ฌ๐’•) ๐Ž๐ง ๐๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐ญ๐ข๐š๐ญ๐ข๐จ๐ง ๐’…๐’š ๐’…๐’• = ๐’‚[๐œ๐จ๐ฌ๐’• + ๐’•๐ฌ๐ข๐ง๐’• โˆ’ ๐œ๐จ๐ฌ๐’•] ๐’…๐’š ๐’…๐’• = ๐’‚(๐’•๐ฌ๐ข๐ง๐’•) ๐’…๐Ÿ๐’š ๐’…๐’•๐Ÿ = ๐’‚[๐’•๐œ๐จ๐ฌ๐’• + ๐ฌ๐ข๐ง๐’•]โ€‰โ€‰โ€‰โ€‰โ€‰โ€‰โ€‰. . . . (๐Ÿ) ๐Ž๐ง ๐๐ข๐ฏ๐ข๐๐ข๐ง๐  . . . (๐Ÿ) ๐š๐ง๐โ€‰. . . (๐Ÿ) ๐’…๐Ÿ๐’š ๐’…๐’•๐Ÿ = ๐’•๐œ๐จ๐ฌ๐’•+๐ฌ๐ข๐ง๐’• ๐œ๐จ๐ฌ๐’•โˆ’๐’•๐ฌ๐ข๐ง๐’• A. 31 27a B. 32a 27 C. 32 27a D. 32 5a Answer: C Explanation: ๐’™ = ๐’‚๐œ๐จ๐ฌ๐Ÿ‘๐œฝ ๐’…๐’™ ๐’…๐œฝ = ๐Ÿ‘๐’‚๐œ๐จ๐ฌ๐Ÿ๐œฝ(โˆ’๐ฌ๐ข๐ง๐œฝ) ๐’…๐’™ ๐’…๐œฝ = โˆ’๐Ÿ‘๐’‚๐œ๐จ๐ฌ๐Ÿ๐œฝ๐ฌ๐ข๐ง๐œฝ ๐’š = ๐’‚๐ฌ๐ข๐ง๐Ÿ‘๐œฝ ๐’…๐’š ๐’…๐œฝ = ๐Ÿ‘๐’‚๐ฌ๐ข๐ง๐Ÿ๐œฝ๐œ๐จ๐ฌ๐œฝ ๐’…๐’š ๐’…๐’™ = ๐’…๐’š ๐’…๐œฝ ๐’…๐’™ ๐’…๐œฝ = ๐Ÿ‘๐’‚๐ฌ๐ข๐ง๐Ÿ๐œฝ๐œ๐จ๐ฌ๐œฝ โˆ’๐Ÿ‘๐’‚๐œ๐จ๐ฌ๐Ÿ๐œฝ๐ฌ๐ข๐ง๐œฝ ๐’…๐’š ๐’…๐’™ = โˆ’๐ญ๐š๐ง๐œฝ ๐’…๐Ÿ๐’š ๐’…๐’™๐Ÿ = โˆ’๐ฌ๐ž๐œ๐Ÿ๐œฝ. ๐’…๐œฝ ๐’…๐’™ ๐’…๐Ÿ๐’š ๐’…๐’™๐Ÿ = ๐ฌ๐ž๐œ๐Ÿ๐œฝ ๐Ÿ‘๐’‚๐œ๐จ๐ฌ๐Ÿ๐œฝ๐ฌ๐ข๐ง๐œฝ ๐’…๐Ÿ๐’š ๐’…๐’™๐Ÿ = ๐Ÿ ๐Ÿ‘๐’‚๐œ๐จ๐ฌ๐Ÿ’๐œฝ๐ฌ๐ข๐ง๐œฝ ( ๐’…๐Ÿ๐’š ๐’…๐’™๐Ÿ)๐œฝโ€‰=โ€‰ ๐… ๐Ÿ” = ๐Ÿ ๐Ÿ‘๐’‚๐ฌ๐ข๐ง ๐… ๐Ÿ” ๐œ๐จ๐ฌ๐Ÿ’๐… ๐Ÿ” ๐’…๐Ÿ๐’š ๐’…๐’™๐Ÿ = ๐Ÿ ๐Ÿ‘๐’‚( ๐Ÿ ๐Ÿ )( โˆš๐Ÿ‘ ๐Ÿ )๐Ÿ’ ๐’…๐Ÿ๐’š ๐’…๐’™๐Ÿ = ๐Ÿ‘๐Ÿ ๐Ÿ๐Ÿ•๐’‚ Q54.If f and g are two continuous functions on their common domain D, then Choose the incorrect or incomplete options from the statements given below. A. f + g is a continuous on D B. f โ€’ g is a continuous on D C. f ร— g is a continuous on D D. f / g is a continuous on D Answer: D Explanation: If f and g are two continuous functions on their common domain D, then f + g is a continuous on D f โ€’ g is a continuous on D f ร— g is a continuous on D f / g is continuous on D โ€’ {x: g (x) โ‰  0}. Q55.Which of the following statements is false? A. |x| is continuous at x = 0 B. |x| is differentiable at x = 0 C. |x| is not continuous but not differentiable at x = 0. D. |x| is continuous at x = 1 and โ€’1 Answer: C Explanation: The graph of |x| is shown below the graph is continuous at x = 0. But, the graph has a kink at x = 0. Therefore, the function f (x) = |x| is not continuous but not differentiable at x = 0. Q56. ๐ผ๐‘ก ๐‘–๐‘  ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘“(๐‘ฅ) = ๐‘ฅ3 + ๐‘๐‘ฅ2 + ๐‘Ž๐‘ฅ ๐‘œ๐‘› [1, 3], ๐‘…๐‘œ๐‘™๐‘™๐‘’โ€™๐‘  ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘’๐‘š โ„Ž๐‘œ๐‘™๐‘‘๐‘  ๐‘ค๐‘–๐‘กโ„Ž ๐‘ = 2 + 1 โˆš3 ๐‘กโ„Ž๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’๐‘  ๐‘œ๐‘“ ๐‘Ž ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘Ž๐‘Ÿ๐‘’: A. a = 11, b = โˆ’ 6 B. a = โˆ’11, b = 6 C. a = โˆ’11, b = โˆ’ 6 D. a =11, b = 6 Answer: A Explanation: ๐‘ฎ๐’Š๐’—๐’†๐’, ๐’‡(๐’™) = ๐’™๐Ÿ‘ + ๐’ƒ๐’™๐Ÿ + ๐’‚๐’™ ๐’…๐’†๐’‡๐’Š๐’๐’†๐’… ๐’๐’ [๐Ÿ, ๐Ÿ‘], โ‡’ ๐’‡โ€ฒ(๐’™) = ๐Ÿ‘๐’™๐Ÿ + ๐Ÿ๐’ƒ๐’™ + ๐’‚ โ‡’ ๐’‡โ€ฒ(๐’„) = ๐Ÿ‘๐’„๐Ÿ + ๐Ÿ๐’ƒ๐’„ + ๐’‚ ๐‘ต๐’๐’˜, ๐‘น๐’๐’๐’๐’†โ€™๐’” ๐’•๐’‰๐’†๐’๐’“๐’†๐’Ž ๐’‰๐’๐’๐’… ๐’‡๐’๐’“ ๐’‡(๐’™) ๐’…๐’†๐’‡๐’Š๐’๐’†๐’… ๐’๐’ [๐Ÿ, ๐Ÿ‘] ๐’˜๐’Š๐’•๐’‰ ๐’„ = ๐Ÿ + ๐Ÿ โˆš๐Ÿ‘ ๐“๐ก๐ž๐ซ๐ž๐Ÿ๐จ๐ซ๐ž, ๐’‡(๐Ÿ) = ๐’‡(๐Ÿ‘) = ๐’‡โ€ฒ(๐œ) = ๐ŸŽ ๐’‡โ€ฒ(๐’„) = ๐ŸŽ โ‡’ ๐Ÿ‘๐’„๐Ÿ + ๐Ÿ๐’ƒ๐’„ + ๐’‚ = ๐ŸŽโ€‰. . . (๐’Š) ๐‘บ๐’–๐’ƒ๐’”๐’•๐’Š๐’•๐’–๐’•๐’Š๐’๐’ˆ ๐’„ = ๐Ÿ + ๐Ÿ โˆš๐Ÿ‘ โ€‰๐ข๐งโ€‰. . . (๐’Š), โ€‰๐ฐ๐žโ€‰๐ก๐š๐ฏ๐ž ๐Ÿ‘(๐Ÿ + ๐Ÿ โˆš๐Ÿ‘ )๐Ÿ + ๐Ÿ๐’ƒ(๐Ÿ + ๐Ÿ โˆš๐Ÿ‘ ) + ๐’‚ = ๐ŸŽ โ‡’ ๐’‚ + ๐Ÿ’๐’ƒ + ๐Ÿ๐Ÿ‘ + ๐Ÿ โˆš๐Ÿ‘ (๐’ƒ + ๐Ÿ”) = ๐ŸŽ. . . . (๐’Š) ๐‘จ๐’๐’”๐’, ๐’‡(๐Ÿ) = ๐’‡(๐Ÿ‘) โ‡’ ๐Ÿ + ๐’ƒ + ๐’‚ = ๐Ÿ๐Ÿ• + ๐Ÿ—๐’ƒ + ๐Ÿ‘๐’‚ โ‡’ ๐’‚ + ๐Ÿ’๐’ƒ + ๐Ÿ๐Ÿ‘ = ๐ŸŽโ€‰. . . (๐’Š๐’Š) ๐‘บ๐’๐’๐’—๐’Š๐’๐’ˆ ๐’ƒ๐’๐’•๐’‰ ๐’†๐’’๐’–๐’‚๐’•๐’Š๐’๐’๐’” โ€ฆ (๐’Š) ๐’‚๐’๐’… โ€ฆ (๐’Š๐’Š), ๐’˜๐’† ๐’‰๐’‚๐’—๐’† ๐’‚ = ๐Ÿ๐Ÿ, โ€‰๐’ƒ = โˆ’๐Ÿ”. Q57.Find a real number c between (1, 2) such that Lagrangeโ€™s mean value theorem holds true for the function f (x) = x (x โ€“ 2) on the interval [1, 2]. A. 3/2 B. 2/3 C. ยฝ D. 5/4 Answer: A Q60. ๐‘ญ๐’Š๐’๐’… ๐’•๐’‰๐’† ๐’‘๐’๐’Š๐’๐’•๐’” ๐’๐’ ๐’•๐’‰๐’† ๐’„๐’–๐’“๐’—๐’† ๐’™๐Ÿ + ๐’š๐Ÿ โˆ’ ๐Ÿ๐’™โ€“ ๐Ÿ‘ = ๐ŸŽ ๐’‚๐’• ๐’˜๐’‰๐’Š๐’„๐’‰ ๐’•๐’‰๐’† ๐’•๐’‚๐’๐’ˆ๐’†๐’๐’•๐’” ๐’‚๐’“๐’† ๐’‘๐’‚๐’“๐’‚๐’๐’๐’†๐’ ๐’•๐’ ๐’™ โˆ’ ๐’‚๐’™๐’Š๐’”. A. (1, 2) and (1, โˆ’2) B. (1, โˆ’2) and (1, 2) C. (โˆ’1, 2) and (1, โˆ’2) D. (โˆ’1, 2) and (1, 2) Answer: A Explanation: ๐’™๐Ÿ + ๐’š๐Ÿ โˆ’ ๐Ÿ๐’™ โˆ’ ๐Ÿ‘ = ๐ŸŽ ๐Ž๐ง ๐๐ข๐Ÿ๐Ÿ๐ž๐ซ๐ž๐ง๐ญ๐ข๐š๐ญ๐ข๐จ๐ง ๐Ÿ๐’™ + ๐Ÿ๐’š. ๐’…๐’š ๐’…๐’™ โˆ’ ๐Ÿ = ๐ŸŽ ๐’…๐’š ๐’…๐’™ = ๐Ÿโˆ’๐’™ ๐’š Now, the tangents are parallel to the x-axis if the slope of the tangent = 0 โ‡’ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = 0 โ‡’ 1 โˆ’ ๐‘ฅ ๐‘ฆ = 0 โ‡’ 1 โˆ’ ๐‘ฅ = 0 โˆด ๐‘ฅ = 1 ๐ด๐‘™๐‘ ๐‘œ, ๐‘๐‘ข๐‘ก๐‘ก๐‘–๐‘›๐‘” ๐‘ฅ = 1 ๐‘–๐‘› ๐‘ฅ2 + ๐‘ฆ2 โˆ’ 2๐‘ฅ โˆ’ 3 = 0 ๐‘Š๐‘’ โ„Ž๐‘Ž๐‘ฃ๐‘’, ๐‘ฆ2 = 4 ๐‘ฆ = ยฑ2 Hence, (1, 2) and (1, โˆ’2) are the points at which the tangents are parallel to the x-axis. Q61. ๐‘ญ๐’Š๐’๐’… ๐’•๐’‰๐’† ๐’‘๐’๐’Š๐’๐’•๐’” ๐’๐’ ๐’•๐’‰๐’† ๐’„๐’–๐’“๐’—๐’† ๐’š = ๐’™๐Ÿ‘ ๐’‚๐’• ๐’˜๐’‰๐’Š๐’„๐’‰ ๐’•๐’‰๐’† ๐’”๐’๐’๐’‘๐’† ๐’๐’‡ ๐’•๐’‰๐’† ๐’•๐’‚๐’๐’ˆ๐’†๐’๐’• ๐’Š๐’” ๐’†๐’’๐’–๐’‚๐’ ๐’•๐’ ๐’•๐’‰๐’† ๐’š โˆ’ ๐’„๐’๐’๐’“๐’…๐’Š๐’๐’‚๐’•๐’† ๐’๐’‡ ๐’•๐’‰๐’† ๐’‘๐’๐’Š๐’๐’•. A. (2, 27) B. (3, 27) C. (3, 25) D. (3, 26) Answer: Option B Explanation: y=x3 On differentiation ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ = 3๐‘ฅ2 The slope of the tangent at the point (x, y) is, ๐’…๐’š ๐’…๐’™ ](๐’™,๐’š) = ๐Ÿ‘(๐’™)๐Ÿ When the slope of the tangent = equal to the y-coordinate of the point, then ๐’š = ๐Ÿ‘๐’™๐Ÿ ๐‘จ๐’๐’”๐’, ๐’š = ๐’™๐Ÿ‘ โˆด ๐Ÿ‘๐’™๐Ÿ = ๐’™๐Ÿ‘ ๐’™๐Ÿ (๐’™ โ€“ ๐Ÿ‘) = ๐ŸŽ ๐’™ = ๐ŸŽ, ๐’™ = ๐Ÿ‘ ๐‘พ๐’‰๐’†๐’ ๐’™ = ๐ŸŽ, ๐’•๐’‰๐’†๐’ ๐’š = ๐ŸŽ ๐’‚๐’๐’… ๐‘พ๐’‰๐’†๐’ ๐’™ = ๐Ÿ‘, ๐’•๐’‰๐’†๐’ ๐’š = ๐Ÿ‘(๐Ÿ‘)๐Ÿ = ๐Ÿ๐Ÿ• ๐‘ฏ๐’†๐’๐’„๐’†, ๐’•๐’‰๐’† ๐’“๐’†๐’’๐’–๐’Š๐’“๐’†๐’… ๐’‘๐’๐’Š๐’๐’•๐’” ๐’‚๐’“๐’† (๐ŸŽ, ๐ŸŽ) ๐’‚๐’๐’… (๐Ÿ‘, ๐Ÿ๐Ÿ•). Q62.A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/s. The rate at which its area is increasing when radius is 3.2 cm is A. 32.0ฯ€ cm2/s B. 3.20ฯ€ cm2/s C. 0.320ฯ€ cm2/s D. None of these Answer: C Explanation: Let r be the radius of the given disc and A be its area. Then, ๐ด = ๐œ‹๐‘Ÿ2 โ‡’ ๐‘‘๐ด ๐‘‘๐‘ก = 2๐œ‹๐‘Ÿ ๐‘‘๐‘Ÿ ๐‘‘๐‘ก Now approximate rate of increase of radius ๐‘‘๐‘Ÿ = ๐‘‘๐‘Ÿ ๐‘‘๐‘ก ๐›ฅ๐‘ก = 0.05โ€‰cm/s โˆด the approximate rate of increase in area is given by ๐‘‘A = ๐‘‘A ๐‘‘๐‘ก (๐›ฅ๐‘ก) = 2๐œ‹๐‘Ÿ( ๐‘‘๐‘Ÿ ๐‘‘๐‘ก ๐›ฅ๐‘ก) โ€‰โ€‰โ€‰โ€‰= 2๐œ‹(3.2)(0.05) = 0.320๐œ‹โ€‰๐‘๐‘š2/๐‘ . Q63. ๐‘ฐ๐’• ๐’Š๐’” ๐’ˆ๐’Š๐’—๐’†๐’ ๐’•๐’‰๐’‚๐’• ๐’‚๐’• ๐’™ = ๐Ÿ, ๐’•๐’‰๐’† ๐’‡๐’–๐’๐’„๐’•๐’Š๐’๐’ ๐’™๐Ÿ’ โˆ’ ๐Ÿ”๐Ÿ๐’™๐Ÿ + ๐’‚๐’™ + ๐Ÿ— ๐’‚๐’•๐’•๐’‚๐’Š๐’๐’” ๐’Š๐’•๐’” ๐’Ž๐’‚๐’™๐’Š๐’Ž๐’–๐’Ž ๐’—๐’‚๐’๐’–๐’†, ๐’๐’ ๐’•๐’‰๐’† ๐’Š๐’๐’•๐’†๐’“๐’—๐’‚๐’ [๐ŸŽ, ๐Ÿ]. ๐‘ญ๐’Š๐’๐’… ๐’•๐’‰๐’† ๐’—๐’‚๐’๐’–๐’† ๐’๐’‡ ๐’‚. A. 120 B. 110 C. -110 D. -120 Answer: A Explanation: ๐’‡(๐’™) = ๐’™๐Ÿ’ โˆ’ ๐Ÿ”๐Ÿ๐’™๐Ÿ + ๐’‚๐’™ + ๐Ÿ— ๐’‡โ€ฒ(๐’™) = ๐Ÿ’๐’™๐Ÿ‘ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’๐’™ + ๐’‚ ๐’‡โ€ฒ(๐Ÿ) = ๐Ÿ’ โˆ’ ๐Ÿ๐Ÿ๐Ÿ’ + ๐’‚ = โˆ’๐Ÿ๐Ÿ๐ŸŽ + ๐’‚ ๐’‡โ€ฒ(๐Ÿ) = ๐ŸŽ โˆ’๐Ÿ๐Ÿ๐ŸŽ + ๐’‚ = ๐ŸŽ ๐’‚ = ๐Ÿ๐Ÿ๐ŸŽ Q64.Find the rate of change of the area of a circle with respect to its radius r when r = 4 cm A. 5ฯ€ B. 4ฯ€ C. 8ฯ€ D. 2ฯ€ Answer: C Explanation: The area of a circle, A=ฯ€r2 On differentiating both sides On differentiating both sides ๐‘‘๐ด ๐‘‘๐‘Ÿ = ๐‘‘ ๐‘‘๐‘Ÿ (๐œ‹๐‘Ÿ2) = 2๐œ‹๐‘Ÿ ๐ป๐‘’๐‘Ÿ๐‘’ ๐‘‘๐ด ๐‘‘๐‘Ÿ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž ๐‘Ÿ = 4 ๐‘๐‘š ๐‘‘๐ด ๐‘‘๐‘Ÿ = 2๐œ‹๐‘Ÿ = 2๐œ‹(4) = 8๐œ‹ Explanation: โˆซ ๐’…๐’™ ๐Ÿ+๐’™๐Ÿ โˆš๐Ÿ‘ ๐Ÿ ๐‘ณ๐’†๐’• ๐‘ฐ = โˆซ ๐’…๐’™ ๐Ÿ+๐’™๐Ÿ โˆš๐Ÿ‘ ๐Ÿ = [๐ญ๐š๐งโˆ’๐Ÿ๐’™]๐Ÿ โˆš๐Ÿ‘ = ๐ญ๐š๐งโˆ’๐Ÿ(โˆš๐Ÿ‘) โˆ’ ๐ญ๐š๐งโˆ’๐Ÿ(๐Ÿ) = ๐… ๐Ÿ‘ โˆ’ ๐… ๐Ÿ’ = ๐… ๐Ÿ๐Ÿ Q69. ๐‘ฌ๐’—๐’‚๐’๐’–๐’‚๐’•๐’†: โˆซ (๐Ÿ+๐ฅ๐จ๐ ๐’™)๐Ÿ ๐’™ ๐’…๐’™ A. (1+log๐‘ฅ)3 3 + ๐ถ B. (1+log๐‘ฅ)3 2 + ๐ถ C. (1+log๐‘ฅ)2 2 + ๐ถ D. (1โˆ’log๐‘ฅ)3 3 + ๐ถ Answer: A Explanation: โˆซ (๐Ÿ+๐ฅ๐จ๐ ๐’™)๐Ÿ ๐’™ ๐’…๐’™ ๐‘ณ๐’†๐’• ๐Ÿ + ๐ฅ๐จ๐ ๐’™ = ๐’• ๐Ÿ ๐’™ ๐’…๐’™ = ๐’…๐’• ๐‘ท๐’–๐’• ๐’—๐’‚๐’๐’–๐’† ๐’๐’‡ ๐Ÿ ๐’™ ๐’…๐’™ ๐’Š๐’ ๐’•๐’‰๐’† ๐ž๐ฑ๐ฉ๐’“๐’†๐’”๐’”๐’Š๐’๐’ = โˆซ ๐’•๐Ÿ๐’…๐’• = ๐’•๐Ÿ‘ ๐Ÿ‘ + ๐’„ = (๐Ÿ+๐ฅ๐จ๐ ๐’™)๐Ÿ‘ ๐Ÿ‘ + ๐’„ Q70. ๐‘ญ๐’Š๐’๐’… ๐’•๐’‰๐’† ๐’—๐’‚๐’๐’–๐’† ๐’๐’‡ โ€˜๐’‚โ€™ ๐’Š๐’‡ โˆซ ๐Ÿ‘๐’™๐Ÿ๐’…๐’™ = ๐Ÿ– ๐’‚ ๐ŸŽ A. 1 B. 3 C. 2 D. 4 Answer: C Explanation: โˆซ ๐Ÿ‘๐’™๐Ÿ๐’…๐’™ = ๐Ÿ– ๐’‚ ๐ŸŽ ๐Ÿ‘. [ ๐’™๐Ÿ‘ ๐Ÿ‘ ]๐ŸŽ ๐’‚ = ๐Ÿ– [๐’™๐Ÿ‘]๐ŸŽ ๐’‚ = ๐Ÿ– ๐’‚๐Ÿ‘ โˆ’ ๐ŸŽ = ๐Ÿ– ๐’‚ = ๐Ÿ Q71. โˆซ๐ฅ๐จ๐ (๐Ÿ + ๐’™๐Ÿ)๐’…๐’™ =? A. xlog(1+x2)โˆ’2x+2tanโˆ’1x+C B. โˆ’xlog(1+x2)โˆ’2xโˆ’2tanโˆ’1x+C C. xlog(1+x2)+2x+2tanโˆ’1x+C D. xlog(1+x2)โˆ’2x+2tanโˆ’1(1+x2)+C Answer: A Explanation: ๐‹๐ž๐ญ, โ€‰๐ˆ = โˆซ ๐ฅ๐จ๐ (๐Ÿ + ๐’™๐Ÿ)๐’…๐’™ โ‡’ ๐ˆ = โˆซ ๐Ÿ โ‹… ๐ฅ๐จ๐ (๐Ÿ + ๐’™๐Ÿ)๐’…๐’™ โ‡’ ๐ˆ = ๐’™๐ฅ๐จ๐ (๐Ÿ + ๐’™๐Ÿ) โˆ’ โˆซ (๐’™ โ‹… ๐Ÿ ๐Ÿ+๐’™๐Ÿ โ‹… ๐Ÿ๐’™)๐’…๐’™ โ‡’ ๐ˆ = ๐’™๐ฅ๐จ๐ (๐Ÿ + ๐’™๐Ÿ) โˆ’ ๐Ÿโˆซ ( ๐’™๐Ÿ ๐Ÿ+๐’™๐Ÿ)๐’…๐’™ โ‡’ ๐ˆ = ๐’™๐ฅ๐จ๐ (๐Ÿ + ๐’™๐Ÿ) โˆ’ ๐Ÿโˆซ ( ๐’™๐Ÿ+๐Ÿโˆ’๐Ÿ ๐Ÿ+๐’™๐Ÿ )๐’…๐’™ โ‡’ ๐ˆ = ๐’™๐ฅ๐จ๐ (๐Ÿ + ๐’™๐Ÿ) โˆ’ ๐Ÿโˆซ ๐’…๐’™ + ๐Ÿโˆซ ๐Ÿ ๐Ÿ+๐’™๐Ÿ ๐’…๐’™ โ‡’ ๐ˆ = ๐’™๐ฅ๐จ๐ (๐Ÿ + ๐’™๐Ÿ) โˆ’ ๐Ÿ๐’™ + ๐Ÿ๐ญ๐š๐งโˆ’๐Ÿ๐’™ + ๐‚. Q72. ๐‘ฐ๐’‡ โˆซ ๐’†๐’• ๐Ÿ+๐’• ๐’…๐’• ๐Ÿ ๐ŸŽ โ€‰ = ๐’‚, ๐’•๐’‰๐’†๐’ โˆซ ๐’†๐’• (๐Ÿ+๐’•)๐Ÿ ๐’…๐’• ๐Ÿ ๐ŸŽ โ€‰ =? A. ๐‘Ž โˆ’ 1 + ๐‘’ 2 B. ๐‘Ž + 1 โˆ’ ๐‘’ 2 C. a D. a2 Answer: B Explanation: According to question โˆซ ๐‘’๐‘ก 1 + ๐‘ก ๐‘‘๐‘ก 1 0 โ€‰ = ๐‘Ž โ‡’ | 1 1 + ๐‘ก ๐‘’๐‘ก|0 1 โˆ’ โˆซ[โˆ’ ๐‘’๐‘ก (1 + ๐‘ก)2 ]๐‘‘๐‘ก 1 0 โ€‰ = ๐‘Ž โ‡’ ๐‘’ 1 + 1 โˆ’ 1 + โˆซ ๐‘’๐‘ก (1 + ๐‘ก)2 ๐‘‘๐‘ก 1 0 โ€‰ = ๐‘Ž โ‡’ ๐‘’ 2 โˆ’ 1 + โˆซ ๐‘’๐‘ก (1 + ๐‘ก)2 ๐‘‘๐‘ก 1 0 โ€‰ = ๐‘Ž โ‡’ โˆซ ๐‘’๐‘ก (1 + ๐‘ก)2 ๐‘‘๐‘ก 1 0 โ€‰ = ๐‘Ž + 1 โˆ’ ๐‘’ 2 Q73. โˆซ ๐Ÿ ๐ฌ๐ข๐ง๐Ÿ๐’™๐œ๐จ๐ฌ๐Ÿ๐’™ ๐’…๐’™ =? A. tanxโ€‰+โ€‰cotxโ€‰+โ€‰C B. (tanxโ€‰+โ€‰cotx)2โ€‰+โ€‰C C. tanxโ€‰โˆ’โ€‰cotxโ€‰+โ€‰C D. (tanxโ€‰โˆ’โ€‰cotxโ€‰)2+โ€‰C Answer: C Explanation: This can be solved as, Explanation: The given equations are 2๐‘ฆ = ๐‘ฅ . . . . . . . . . . . . . . . . . . . . . (1) ๐‘Ž๐‘›๐‘‘ ๐‘ฅ2 + ๐‘ฆ2 = 32 . . . . . . . . . . . (2) Solving (1) and (2) as we find that the line and the circle meet at B(4, 4) in the first quadrant (Fig). Draw perpendicular BM to the x-axis. Area of the region bounded by a circle and a line can be drawn as, Since general equation of the circle passing through origin is : ๐‘ฅ2 + ๐‘ฆ2 = ๐‘Ÿ2 ๐ถ๐‘œ๐‘š๐‘๐‘Ž๐‘–๐‘Ÿ๐‘–๐‘›๐‘” ๐‘ฅ2 + ๐‘ฆ2 = 32 ๐‘”๐‘–๐‘ฃ๐‘’๐‘› ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘ค๐‘–๐‘กโ„Ž ๐‘ฅ2 + ๐‘ฆ2 = ๐‘Ÿ2, ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘Ÿ2 = 32 โ‡’ ๐‘Ÿ = 4โˆš2 For region OMBO, limits will be from 0 to intersecting point i.e 4 and for the region BMAB, limits will be 4 to 4โˆš2 Therefore, the required area = area of the region OBMO + area of the region BMAB. = โˆซ ๐’š๐Ÿ ๐Ÿ’ ๐ŸŽ ๐’…๐’™ + โˆซ ๐’š๐Ÿ ๐Ÿ’โˆš๐Ÿ ๐Ÿ’ ๐’…๐’™ = โˆซ ๐Ÿ’ ๐ŸŽ ๐’™๐’…๐’™ + โˆซ โˆš๐Ÿ‘๐Ÿ โˆ’ ๐’™๐Ÿ ๐Ÿ’โˆš๐Ÿ ๐Ÿ’ ๐’…๐’™ = [ ๐’™๐Ÿ ๐Ÿ ]๐ŸŽ ๐Ÿ’ + [ ๐Ÿ ๐Ÿ ๐’™โˆš๐Ÿ‘๐Ÿ โˆ’ ๐’™๐Ÿ + ๐Ÿ‘๐Ÿ ๐Ÿ ๐ฌ๐ข๐งโˆ’๐Ÿ ๐’™ โˆš๐Ÿ‘๐Ÿ ]๐Ÿ’ ๐Ÿ’โˆš๐Ÿ = [ ๐Ÿ๐Ÿ” ๐Ÿ โˆ’ ๐ŸŽ] + [ ๐Ÿ ๐Ÿ ๐Ÿ’โˆš๐Ÿโˆš๐Ÿ‘๐Ÿ โˆ’ ๐Ÿ‘๐Ÿ + ๐Ÿ๐Ÿ”๐ฌ๐ข๐งโˆ’๐Ÿ ๐Ÿ’โˆš๐Ÿ ๐Ÿ’โˆš๐Ÿ ] โˆ’ [ ๐Ÿ ๐Ÿ ๐Ÿ’โˆš๐Ÿ‘๐Ÿ โˆ’ ๐Ÿ๐Ÿ” + ๐Ÿ๐Ÿ”๐ฌ๐ข๐งโˆ’๐Ÿ ๐Ÿ’ ๐Ÿ’โˆš๐Ÿ ] = ๐Ÿ– + [๐ŸŽ + ๐Ÿ๐Ÿ”๐ฌ๐ข๐งโˆ’๐Ÿ๐Ÿ] โˆ’ [๐Ÿ โ‹… ๐Ÿ’ + ๐Ÿ๐Ÿ”๐ฌ๐ข๐งโˆ’๐Ÿ ๐Ÿ โˆš๐Ÿ ] = ๐Ÿ– + ๐Ÿ๐Ÿ”๐ฌ๐ข๐งโˆ’๐Ÿ๐Ÿ โˆ’ ๐Ÿ– โˆ’ ๐Ÿ๐Ÿ”๐ฌ๐ข๐งโˆ’๐Ÿ ๐Ÿ โˆš๐Ÿ = ๐Ÿ๐Ÿ”( ๐… ๐Ÿ โˆ’ ๐… ๐Ÿ’ ) = ๐Ÿ๐Ÿ”( ๐Ÿ๐… โˆ’ ๐… ๐Ÿ’ ) = ๐Ÿ’๐… Hence the required area is 4ฯ€ Square units. Q76. ๐‘ป๐’‰๐’† ๐’‚๐’“๐’†๐’‚ ๐’๐’‡ ๐’•๐’‰๐’† ๐’“๐’†๐’ˆ๐’Š๐’๐’ {(๐’™, ๐’š): ๐ŸŽ โ‰ค ๐’š โ‰ค ๐’™๐Ÿ + ๐Ÿ, ๐ŸŽ โ‰ค ๐’š โ‰ค ๐’™ + ๐Ÿ; ๐ŸŽ โ‰ค ๐’™ โ‰ค ๐Ÿ} ๐’Š๐’”: A. 16/3 sq units B. 13/3 sq units C. 11/3 sq units D. 7/3 sq units Answer: C Explanation: ๐‘ป๐’‰๐’† ๐’„๐’–๐’“๐’—๐’†๐’” ๐’‚๐’“๐’†๐’™ = ๐Ÿ, ๐’š = ๐’™ + ๐Ÿ, ๐’š = ๐’™๐Ÿ + ๐Ÿ ๐‘ป๐’‰๐’† ๐’‘๐’๐’Š๐’๐’• ๐’๐’‡ ๐’Š๐’๐’•๐’†๐’“๐’”๐’†๐’„๐’•๐’Š๐’๐’ ๐’๐’‡ ๐’•๐’‰๐’† ๐’„๐’–๐’“๐’—๐’†๐’” ๐’š = ๐’™ + ๐Ÿ, ๐’š = ๐’™๐Ÿ + ๐Ÿ ๐’™๐Ÿ + ๐Ÿ = ๐’™ + ๐Ÿ ๐’™(๐’™ โˆ’ ๐Ÿ) = ๐ŸŽ ๐’™ = ๐ŸŽ, ๐Ÿ The shaded area is the required area. โˆซ ๐‘ฆ2 1 0 ๐‘‘๐‘ฅ โˆ’ โˆซ ๐‘ฆ1 1 0 ๐‘‘๐‘ฅ + โˆซ ๐‘ฆ2 2 1 ๐‘‘๐‘ฅ = โˆซ(๐‘ฅ + 1) 1 0 ๐‘‘๐‘ฅ โˆ’ โˆซ(๐‘ฅ2 + 1) 1 0 ๐‘‘๐‘ฅ + โˆซ(๐‘ฅ + 1) 2 1 ๐‘‘๐‘ฅ = [ ๐‘ฅ2 2 + ๐‘ฅ]0 1 โˆ’ [ ๐‘ฅ3 3 + ๐‘ฅ]0 1 + [ ๐‘ฅ2 2 + ๐‘ฅ]1 2 = [ 1 2 + 1] โˆ’ [ 1 3 + 1] + [ 4 2 + 2 โˆ’ 1 2 โˆ’ 1] = 1 2 โˆ’ 1 3 + 4 โˆ’ 1 2 = โˆ’ 1 3 + 4 = โˆ’1 + 12 6 = 11 3 ๐‘ ๐‘ž๐‘ข๐‘Ž๐‘Ÿ๐‘’โ€‰๐‘ข๐‘›๐‘–๐‘ก๐‘  Q80.Calculate the area under the curve y = 2โˆšx included between the lines x = 0 and x = 1. A. 2/3 sq units B. 1 sq units C. 4/3 sq units D. 5/3 sq units Answer: C Explanation: Since ๐ด๐‘Ÿ๐‘’๐‘Ž = โˆซ 2โˆš๐‘ฅ๐‘‘๐‘ฅ 1 0 โ‡’ ๐ด๐‘Ÿ๐‘’๐‘Ž = 2[ ๐‘ฅ3/2 3 โ‹… 2]0 1 โ‡’ ๐ด๐‘Ÿ๐‘’๐‘Ž = 2[ 2 3 โ‹… 1 โˆ’ 0] = 4 3 ๐‘ ๐‘žโ€‰๐‘ข๐‘›๐‘–๐‘ก๐‘  Q81. ๐‘พ๐’‰๐’‚๐’• ๐’Š๐’” ๐’•๐’‰๐’† ๐’‘๐’‚๐’“๐’•๐’Š๐’„๐’–๐’๐’‚๐’“ ๐’”๐’๐’๐’–๐’•๐’Š๐’๐’ ๐’๐’‡ ๐’•๐’‰๐’† ๐’…๐’Š๐’‡๐’‡๐’†๐’“๐’†๐’๐’•๐’Š๐’‚๐’ ๐’†๐’’๐’–๐’‚๐’•๐’Š๐’๐’ (๐’•๐’‚๐’โˆ’๐Ÿ๐’š โˆ’ ๐’™) ๐’…๐’š = (๐Ÿ + ๐’š๐Ÿ) ๐’…๐’™? (๐‘ฎ๐’Š๐’—๐’†๐’ ๐’•๐’‰๐’‚๐’•, ๐’‚๐’• ๐’™ = ๐ŸŽ ๐’˜๐’† ๐’‰๐’‚๐’—๐’† ๐’š = ๐ŸŽ) A. ๐‘ฅ = tanโˆ’1๐‘ฆ + ๐‘’โˆ’tanโˆ’1๐‘ฆ B. ๐‘ฅ = tanโˆ’1๐‘ฆ โˆ’ 1 + ๐‘’tanโˆ’1๐‘ฆ C. ๐‘ฅ = tanโˆ’1๐‘ฆ โˆ’ 5 + ๐‘’โˆ’tanโˆ’1๐‘ฆ D. ๐‘ฅ = tanโˆ’1๐‘ฆ โˆ’ 1 + ๐‘’โˆ’tanโˆ’1๐‘ฆ Answer: D Explanation: (tanโˆ’1๐‘ฆ โˆ’ ๐‘ฅ)๐‘‘๐‘ฆ = (1 + ๐‘ฆ2)๐‘‘๐‘ฅ ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ = (tanโˆ’1๐‘ฆ โˆ’ ๐‘ฅ) (1 + ๐‘ฆ2) ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ = tanโˆ’1๐‘ฆ 1 + ๐‘ฆ2 โˆ’ ๐‘ฅ 1 + ๐‘ฆ2 ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ + ๐‘ฅ 1 + ๐‘ฆ2 = tanโˆ’1๐‘ฆ 1 + ๐‘ฆ2 Integrating factor = ๐‘’ โˆซ ๐‘‘๐‘ฆ 1+๐‘ฆ2 = ๐‘’tanโˆ’1๐‘ฆ ๐‘๐‘œ๐‘ค, ๐‘š๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘ฆ ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘๐‘œ๐‘ฃ๐‘’ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘ค๐‘–๐‘กโ„Ž ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘›๐‘” ๐‘“๐‘Ž๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘’tanโˆ’1๐‘ฆ ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ + ๐‘’tanโˆ’1๐‘ฆ. ๐‘ฅ 1 + ๐‘ฆ2 = ๐‘’tanโˆ’1๐‘ฆ. tanโˆ’1๐‘ฆ 1 + ๐‘ฆ2 ๐‘ฅ. ๐‘’tanโˆ’1๐‘ฆ = โˆซ ๐‘’tanโˆ’1๐‘ฆ. tanโˆ’1๐‘ฆ 1 + ๐‘ฆ2 . ๐‘‘๐‘ฆ Let ๐‘ก = tanโˆ’1๐‘ฆ ๐‘‘๐‘ก = ๐‘‘๐‘ฆ 1 + ๐‘ฆ2 ๐‘ฅ. ๐‘’tanโˆ’1๐‘ฆ = โˆซ ๐‘’t. ๐‘ก๐‘‘๐‘ก Applying by parts ๐‘ฅ. ๐‘’tanโˆ’1๐‘ฆ = ๐‘ก(๐‘’๐‘ก) โˆ’ โˆซ ๐‘’t. { ๐‘‘ ๐‘‘๐‘ก (๐‘ก)}๐‘‘๐‘ก ๐‘ฅ. ๐‘’tanโˆ’1๐‘ฆ = ๐‘ก(๐‘’๐‘ก) โˆ’ โˆซ ๐‘’t๐‘‘๐‘ก ๐‘ฅ. ๐‘’tanโˆ’1๐‘ฆ = ๐‘ก๐‘’๐‘ก โˆ’ ๐‘’๐‘ก + ๐ถ ๐‘ฅ. ๐‘’tanโˆ’1๐‘ฆ = tanโˆ’1๐‘ฆ(๐‘’tanโˆ’1๐‘ฆ) โˆ’ ๐‘’tanโˆ’1๐‘ฆ + ๐ถ When ๐‘ฅ = 0, ๐‘ฆ = 0 0 = tanโˆ’10(๐‘’tanโˆ’10) โˆ’ ๐‘’tanโˆ’10 + ๐ถ 0 = โˆ’๐‘’0 + ๐ถ ๐ถ = 1 Q82.The differential equation of the family of parabolas having vertex at the origin and axis along positive y-axis is A. xy'โˆ’y=0 B. xy'+2y=0 C. xy'โˆ’7y=0 D. xy'โˆ’2y=0 Answer: D Explanation: Vertex = (0, 0) The equation of the parabola ๐‘ฅ2 = 4๐‘Ž๐‘ฆโ€‰โ€‰โ€‰โ€‰โ€‰. . . . (1) On differentiation 2๐‘ฅ = 4๐‘Ž๐‘ฆโ€ฒ ๐‘ฅ = 2๐‘Ž๐‘ฆโ€ฒ ๐‘Ž = ๐‘ฅ 2๐‘ฆโ€ฒ Put value of a in equation (1) ๐‘ฅ2 = 4 ๐‘ฅ 2๐‘ฆโ€ฒ ๐‘ฆ ๐‘ฆโ€ฒ๐‘ฅ2 = 2๐‘ฅ๐‘ฆ ๐‘ฆโ€ฒ๐‘ฅ = 2๐‘ฆ ๐‘ฅ๐‘ฆโ€ฒ โˆ’ 2๐‘ฆ = 0 This is the required differential equation. Q83.Write the differential equation representing the family of curves y = m x, where m is an arbitrary constant. A. xdyโˆ’ydx=0 B. xdyโˆ’dx=0 C. xdy+ydx=0 D. dyโˆ’ydx=0 Answer: A Explanation: We have, Answer: B Explanation: This can be solved as follows: projection of a + b on c = (๐‘Ž + ๐‘) โ‹… ๐‘ |๐‘| = (5๐‘– โˆ’ 3๐‘— + 3๐‘˜) โ‹… (๐‘– + 2๐‘— + 2๐‘˜) โˆš1 + 4 + 4 = 5 โˆš9 = 5 3 Q88. ๐‘ฐ๐’‡ ๐’‚ โ†’ , ๐’ƒ โ†’ , ๐’„ โ†’ ๐’‚๐’“๐’† ๐’•๐’‰๐’† ๐’Ž๐’–๐’•๐’–๐’‚๐’๐’๐’š ๐’‘๐’†๐’“๐’‘๐’†๐’๐’…๐’Š๐’„๐’–๐’๐’‚๐’“ ๐’—๐’†๐’„๐’•๐’๐’“๐’” ๐’†๐’‚๐’„๐’‰ ๐’๐’‡ ๐’Ž๐’‚๐’ˆ๐’๐’Š๐’•๐’–๐’…๐’† ๐’–๐’๐’Š๐’•๐’š, ๐’•๐’‰๐’†๐’ |๐’‚ โ†’ + ๐’ƒ โ†’ + ๐’„ โ†’ | = A. 1 B. 3 C. โˆš3 D. 3โˆš3 Answer: C Explanation: ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘Ž โ†’ , ๐‘ โ†’ , ๐‘ โ†’ ๐‘Ž๐‘Ÿ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘š๐‘ข๐‘ก๐‘ข๐‘Ž๐‘™๐‘™๐‘ฆ ๐‘๐‘’๐‘Ÿ๐‘๐‘’๐‘›๐‘‘๐‘–๐‘๐‘ข๐‘™๐‘Ž๐‘Ÿ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘’๐‘Ž๐‘โ„Ž ๐‘œ๐‘“ ๐‘š๐‘Ž๐‘”๐‘›๐‘–๐‘ก๐‘ข๐‘‘๐‘’ ๐‘ข๐‘›๐‘–๐‘ก๐‘ฆ, ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’, |๐‘Ž| = |๐‘| = |๐‘| = 1 ๐‘Ž โ‹… ๐‘ = ๐‘Ž โ‹… ๐‘ = ๐‘ โ‹… ๐‘ = 0 ๐‘๐‘œ๐‘ค, |๐‘Ž โ†’ + ๐‘ โ†’ + ๐‘ โ†’ |2 = |๐‘Ž|2 + |๐‘|2 + |๐‘|2 + 2๐‘Ž โ‹… ๐‘ + 2๐‘Ž โ‹… ๐‘ + 2๐‘ โ‹… ๐‘ โ‡’ |๐‘Ž โ†’ + ๐‘ โ†’ + ๐‘ โ†’ |2 = 1 + 1 + 1 + 0 + 0 + 0 โ‡’ |๐‘Ž โ†’ + ๐‘ โ†’ + ๐‘ โ†’ |2 = 3 โ‡’ |๐‘Ž โ†’ + ๐‘ โ†’ + ๐‘ โ†’ |2 = โˆš3 Q89. ๐‘ฐ๐’‡ ๐’—๐’†๐’„๐’•๐’๐’“๐’” ๐’Š ^ + ๐Ÿ๐’‹ ^ + ๐Ÿ‘๐’Œ ^ โ€‰๐’‚๐’๐’…โ€‰๐Ÿ‘๐’Š ^ โˆ’ ๐Ÿ๐’‹ ^ + ๐’Œ ^ ๐’“๐’†๐’‘๐’“๐’†๐’”๐’†๐’๐’•๐’” ๐’•๐’‰๐’† ๐’‚๐’…๐’‹๐’‚๐’„๐’†๐’๐’• ๐’”๐’Š๐’…๐’†๐’” ๐’๐’‡ ๐’‚ ๐’‘๐’‚๐’“๐’‚๐’๐’๐’†๐’๐’๐’ˆ๐’“๐’‚๐’Ž, ๐’•๐’‰๐’† ๐’‚๐’“๐’†๐’‚ ๐’๐’‡ ๐’‘๐’‚๐’“๐’‚๐’๐’๐’†๐’๐’๐’ˆ๐’“๐’‚๐’Ž ๐’Š๐’” A. 4โˆš3 B. 6โˆš3 C. 8โˆš3 D. 16โˆš3 Answer: C Explanation: We have, (๐‘Ž ร— ๐‘) = | ๐‘– ๐‘— ๐‘˜ 1 2 3 3 โˆ’2 1 | (๐‘Ž ร— ๐‘) = ๐‘–(2 + 6) โˆ’ ๐‘—(1 โˆ’ 9) + ๐‘˜(โˆ’2 โˆ’ 6) = 8๐‘– + 8๐‘— โˆ’ 8๐‘˜ ๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’โ€‰๐‘Ž๐‘Ÿ๐‘’๐‘Ž |(๐‘Ž ร— ๐‘)| = |8๐‘– + 8๐‘— โˆ’ 8๐‘˜| = โˆš|82 + 82 + 82| = 8โˆš3 Q90.If the position vector of three consecutive vertices of any parallelogram are respectively i + j + k, i + 3j + 5k, 7i + 9j + 11k, then the position vector of fourth vertex is - A. 6(i+j+k) B. 7(i+j+k) C. 2jโˆ’4k D. 6i+8j+10k Answer: B Explanation: Let the position vector of 4 vertices are ๐ด(๐‘– + ๐‘— + ๐‘˜), ๐ต(๐‘– + 3๐‘— + 5๐‘˜), ๐ถ(7๐‘– + 9๐‘— + 11๐‘˜) ๐ท(๐‘ฅ๐‘– + ๐‘ฆ๐‘— + ๐‘ง๐‘˜) Since the diagonals of parallelogram bisects, so the midpoint of AC and BD coincides, therefore, 7 + 1 2 = 1 + ๐‘ฅ 2 โ‡’ ๐‘ฅ = 7 9 + 1 2 = 3 + ๐‘ฆ 2 โ‡’ ๐‘ฆ = 7 11 + 1 2 = 5 + ๐‘ง 2 โ‡’ ๐‘ง = 7 Therefore, fourth position vector is 7i + 7j + 7k Q91.If vector 3j + 2j + 8k and 2i + xj + k are perpendicular then x is equal to A. 7 B. -7 C. 5 D. -4 Answer: B Explanation: For perpendicular vectors, 3 โ‹… 2 + 2 โ‹… ๐‘ฅ + 8 โ‹… 1 = 0 โ‡’ 6 + 2๐‘ฅ + 8 = 0 โ‡’ 2๐‘ฅ = โˆ’14 โ‡’ ๐‘ฅ = โˆ’7 Q92.If i + 2j + 3k is parallel to sum of the vector 3i + ฮปj + 2k and -2i + 3j + k, then equals to: A. 1 B. -1 C. 2 D. -2 Answer: B Explanation: According to given condition ๐‘– + 2๐‘— + 3๐‘˜ = 3๐‘– + ๐œ†๐‘— + 2๐‘˜โ€‰ + โˆ’2๐‘– + 3๐‘— + ๐‘˜ โ‡’ ๐‘– + 2๐‘— + 3๐‘˜ = ๐‘– + (3 + ๐œ†)๐‘— + 3๐‘˜ โ‡’ ๐‘– + 2๐‘— + 3๐‘˜ = ๐‘– + (3 + ๐œ†)๐‘— + 3๐‘˜ For vectors to be parallel ๐‘ฅ โˆ’ 1 2 = ๐‘ฆ โˆ’ 2 3 = ๐‘ง โˆ’ 3 4 = ๐œ† ๐‘ฅ = 2๐œ† + 1 ๐‘ฆ = 3๐œ† + 2 ๐‘ง = 4๐œ† + 3 The coordinates of any point on second line are given by ๐‘ฅ โˆ’ 4 5 = ๐‘ฆ โˆ’ 1 2 = ๐‘ง = ๐œ‡ ๐‘ฅ = 5๐œ‡ + 4 ๐‘ฆ = 2๐œ‡ + 1 ๐‘ง = ๐œ‡ The point of intersection can be calculated by considering corresponding coordinates equal as, 2๐œ† + 1 = 5๐œ‡ + 4 โ‡’ 2๐œ† โˆ’ 5๐œ‡ = 3 3๐œ† + 2 = 2๐œ‡ + 1 โ‡’ 3๐œ† โˆ’ 2๐œ‡ = โˆ’1 4๐œ† + 3 = ๐œ‡ โ‡’ 4๐œ† โˆ’ ๐œ‡ = โˆ’3 ๐‘€๐‘ข๐‘™๐‘ก๐‘–๐‘๐‘™๐‘ฆ๐‘–๐‘›๐‘” 2๐œ† โˆ’ 5๐œ‡ = 3 ๐‘๐‘ฆ 2 ๐‘Ž๐‘ , 2๐œ† โˆ’ 5๐œ‡ = 3 โ‡’ 2(2๐œ† โˆ’ 5๐œ‡ = 3) โ‡’ 4๐œ† โˆ’ 10๐œ‡ = 6 ๐‘†๐‘ข๐‘๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘›๐‘” 4๐œ† โˆ’ ๐œ‡ = โˆ’3 ๐‘“๐‘Ÿ๐‘œ๐‘š 4๐œ† โˆ’ 10๐œ‡ = 6 ๐‘Ž๐‘ , 4๐œ† โˆ’ 10๐œ‡ = 6 โˆ’(4๐œ† โˆ’ ๐œ‡ = โˆ’3) _ โˆ’9๐œ‡ = 9 โ‡’ ๐œ‡ = โˆ’1 ๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘›๐‘” ๐œ‡ = โˆ’1 ๐‘–๐‘› 4๐œ† โˆ’ ๐œ‡ = โˆ’3 ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก 4๐œ† โˆ’ (โˆ’1) = โˆ’3 โ‡’ 4๐œ† + 1 = โˆ’3 โ‡’ 4๐œ† = โˆ’4 โ‡’ ๐œ† = โˆ’1 ๐‘‡โ„Ž๐‘’ ๐‘๐‘œ๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘Ž๐‘ก๐‘’๐‘  ๐‘œ๐‘“ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘ ๐‘’๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘Ž๐‘Ÿ๐‘’ ๐‘ฅ = 2(โˆ’1) + 1 = โˆ’1 ๐‘ฆ = 3(โˆ’1) + 2 = โˆ’1 ๐‘ง = 4(โˆ’1) + 3 = โˆ’1 ๐ผ. ๐‘’ (โˆ’1, โˆ’1, โˆ’1) Q95.The equation of the plane through the line of intersection of the planes x + y + z and 2x + 3y + 4z = 5 which is โŠฅ of the plane x - y + z = 0 is: A. xโˆ’z+2=0 B. x+z+2=0 C. y+z+2=0 D. y+zโˆ’2=0 Answer: A Explanation: The equation of a plane passing through the line of intersection of the planes ๐‘ฅ + ๐‘ฆ + ๐‘ง = 1 ๐‘Ž๐‘›๐‘‘ 2๐‘ฅ + 3๐‘ฆ + 4๐‘ง = 5 ๐‘–๐‘ : (๐’™ + ๐’š + ๐’› โˆ’ ๐Ÿ) + ๐€(๐Ÿ๐’™ + ๐Ÿ‘๐’š + ๐Ÿ’๐’› โˆ’ ๐Ÿ“) = ๐ŸŽ โ‡’ (๐Ÿ + ๐Ÿ๐€)๐’™ + (๐Ÿ + ๐Ÿ‘๐€)๐’š + (๐Ÿ + ๐Ÿ’๐€)๐’› โˆ’ ๐Ÿ โˆ’ ๐Ÿ“๐€ = ๐ŸŽ. . . . . . . . . . (๐Ÿ) ๐‘บ๐’Š๐’๐’„๐’† ๐’•๐’‰๐’† ๐’‘๐’๐’‚๐’๐’† ๐’Š๐’” ๐’‘๐’†๐’“๐’‘๐’†๐’๐’…๐’Š๐’„๐’–๐’๐’‚๐’“ ๐’•๐’ ๐’•๐’‰๐’† ๐’‘๐’๐’‚๐’๐’† ๐’™ โˆ’ ๐’š + ๐’› = ๐ŸŽ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (๐Ÿ) ๐‘บ๐’Š๐’๐’„๐’† ๐’‡๐’๐’“ ๐’•๐’˜๐’ ๐’‘๐’๐’‚๐’๐’†๐’”, ๐’‚๐Ÿ๐’™ + ๐’ƒ๐Ÿ๐’š + ๐’„๐Ÿ๐’› + ๐’…๐Ÿ = ๐ŸŽ ๐’‚๐Ÿ๐’™ + ๐’ƒ๐Ÿ๐’š + ๐’„๐Ÿ๐’› + ๐’…๐Ÿ = ๐ŸŽ ๐‘ช๐’๐’๐’…๐’Š๐’•๐’Š๐’๐’ ๐’๐’‡ ๐’‘๐’†๐’“๐’‘๐’†๐’๐’…๐’Š๐’„๐’–๐’๐’‚๐’“๐’Š๐’•๐’š ๐’Š๐’” ๐’‚๐Ÿ๐’‚๐Ÿ + ๐’ƒ๐Ÿ๐’ƒ๐Ÿ + ๐’„๐Ÿ๐’„๐Ÿ = ๐ŸŽ ๐‘ผ๐’”๐’Š๐’๐’ˆ ๐’•๐’‰๐’Š๐’” ๐’Š๐’ ๐’‚๐’ƒ๐’๐’—๐’† ๐’†๐’’๐’–๐’‚๐’•๐’Š๐’๐’ (๐Ÿ) ๐’‚๐’๐’… (๐Ÿ) ๐’‚๐’”, (๐Ÿ + ๐Ÿ๐€)๐Ÿ โˆ’ (๐Ÿ + ๐Ÿ‘๐€)๐Ÿ + (๐Ÿ + ๐Ÿ’๐€)๐Ÿ = ๐ŸŽ ๐Ÿ + ๐Ÿ๐€ โˆ’ ๐Ÿ โˆ’ ๐Ÿ‘๐€ + ๐Ÿ + ๐Ÿ’๐€ = ๐ŸŽ ๐Ÿ‘๐€ = โˆ’๐Ÿ ๐€ = โˆ’ ๐Ÿ ๐Ÿ‘ ๐‘บ๐’–๐’ƒ๐’”๐’•๐’Š๐’•๐’–๐’•๐’Š๐’๐’ˆ ๐’•๐’‰๐’† ๐’—๐’‚๐’๐’–๐’† ๐’๐’‡ ๐€ ๐’Š๐’ ๐’‚๐’ƒ๐’๐’—๐’† ๐’†๐’’๐’–๐’‚๐’•๐’Š๐’๐’ ๐’๐’‡ ๐’Š๐’๐’•๐’†๐’“๐’”๐’†๐’„๐’•๐’Š๐’๐’ ๐’๐’‡ ๐’‘๐’๐’‚๐’๐’†, ๐‘ป๐’‰๐’† ๐’“๐’†๐’’๐’–๐’Š๐’“๐’†๐’… ๐’†๐’’๐’–๐’‚๐’•๐’Š๐’๐’ ๐’๐’‡ ๐’‘๐’๐’‚๐’๐’† ๐’Š๐’” : (๐’™ + ๐’š + ๐’› โˆ’ ๐Ÿ) + ๐€(๐Ÿ๐’™ + ๐Ÿ‘๐’š + ๐Ÿ’๐’› โˆ’ ๐Ÿ“) = ๐ŸŽ โ‡’ (๐’™ + ๐’š + ๐’› โˆ’ ๐Ÿ) โˆ’ ๐Ÿ ๐Ÿ‘ (๐Ÿ๐’™ + ๐Ÿ‘๐’š + ๐Ÿ’๐’› โˆ’ ๐Ÿ“) = ๐ŸŽ โ‡’ ๐Ÿ‘๐’™ + ๐Ÿ‘๐’š + ๐Ÿ‘๐’› โˆ’ ๐Ÿ‘ โˆ’ ๐Ÿ๐’™ โˆ’ ๐Ÿ‘๐’š โˆ’ ๐Ÿ’๐’› + ๐Ÿ“ ๐Ÿ‘ = ๐ŸŽ โ‡’ ๐Ÿ‘๐’™ + ๐Ÿ‘๐’š + ๐Ÿ‘๐’› โˆ’ ๐Ÿ‘ โˆ’ ๐Ÿ๐’™ โˆ’ ๐Ÿ‘๐’š โˆ’ ๐Ÿ’๐’› + ๐Ÿ“ = ๐ŸŽ โ‡’ ๐’™ โˆ’ ๐’› + ๐Ÿ = ๐ŸŽ Q96.If the points (1,1, p) and (-3,0,1)be equidistant from the plane A. 5/3 or -5/3 B. 1/3 or -7/3 C. 2/3 or -7/3 D. 1/3 or -2/3 Answer: B Q97.The position vector of the foot of perpendicular drawn from the point P(1,8,4) to the line joining A(0,-1,3) and B(5,4,4) is: A. (5, 5, 5) B. (5, 4, 4) C. (4, 4, 4) D. (5,-4, 4) Answer: B Q98.The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by A. (2, 0, 0) B. (0, 5, 0) C. (0, 0, 7) D. (0, 5, 7) Answer: A Explanation: Since on x-axis y and z coordinates are zero, therefore, coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) would be (2, 0, 0) Q99.A line makes equal angles with co-ordinate axis. Direction cosines of this line are: A. 1 โˆš2 , 1 โˆš2 , 1 โˆš2 B. 1 โˆš3 , 1 โˆš3 , 1 โˆš3 C. 1 2 , 1 2 , 1 2 D. 1 5 , 1 5 , 1 5 Answer: B Explanation: Let the line makes angle ฮฑ with each of the axis. Then, its direction cosines are cos ฮฑ, cos ฮฑ, cos ฮฑ ๐‘†๐‘–๐‘›๐‘๐‘’ ๐‘๐‘œ๐‘ 2๐›ผ + ๐‘๐‘œ๐‘ 2๐›ผ + ๐‘๐‘œ๐‘ 2๐›ผ = 1. ๐‘‡โ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’, ๐‘๐‘œ๐‘ 2๐›ผ + ๐‘๐‘œ๐‘ 2๐›ผ + ๐‘๐‘œ๐‘ 2๐›ผ = 1 โ‡’ 3๐‘๐‘œ๐‘ 2๐›ผ = 1 โ‡’ ๐‘๐‘œ๐‘ 2๐›ผ = 1 3 โ‡’ ๐‘๐‘œ๐‘ ๐›ผ = 1 โˆš3 Q101.The feasible solution for a LPP is shown in Fig.. Let Z = 3x - 4y be the objective function. Minimum of Z occurs at A. (0, 0) B. (0, 8) C. (5, 0) D. (4, 10) Answer: B Explanation: Corner points Z value for (0,0) 0 (5,0) 15 (6,5) -2 (6,8) -14 (4,10) -28 (0,8) -32 (minimum) Q102.The common region determined by all the linear constraints of a LPP is/are called: A. corner points B. Feasible region C. unbounded region D. Bounded region Answer: B Explanation: Feasible region Q103.Any point in the feasible region that gives the maximum or minimum value of the objective function is also known as A. optimal solution B. infeasible solution C. constraints D. linear values Answer: A Explanation: Any point in the feasible region that gives the optimal value (maximum or minimum) of the objective function is called an optimal solution. Q104.The inequations or equations in the variables of linear programming problems which describes the condition under which the optimization (maximization or minimization) is to be accomplished are called A. objective functions B. objective variables C. constraints D. decision variables Answer: C Explanation: The in equations or equations in the variables of linear programming problems which describes the condition under which the optimization (maximization or minimization) is to be accomplished are called constraints. Q11.Linear function Z = ax + by, where a, b are constants, which has to be maximized or minimized is called a linear objective function. Here, x and y are known as A. Constraints B. Decision variables C. Objective variables D. None of these Answer: B Explanation: Linear function Z = ax + by, where a, b are constants, which has to be maximised or minimized is called a linear objective function. Variables x and y are known as decision variables. Q105.Let R be the feasible region for a linear programming problem, and let Z = ax + by be the objective function. If R is bounded, then the objective function Z A. only has a minimum value on R B. only has a minimum value on R C. may have a maximum and a minimum value on R D. must has both a maximum and a minimum value on R Answer: D Explanation: Let R be the feasible region for a linear programming problem, and let Z = ax + by be the objective function. If R is bounded, then the objective function Z has both a maximum and a minimum value on R and each of these occurs at a corner point (vertex) of R Q106.How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%. A. 5 B. 4 C. 3 D. 2 Answer: C Explanation: We have given Probability of getting at least one head is 80%. This implies the value of head can be 1 or 2 but not 0. This implies Q109.A cricket player has an average score of 40 runs for 52 innings played by him. In an innings his highest score exceeds his lowest score by 100 runs. If these two innings are excluded, his average of the remaining 50 innings is 38 runs. Find his highest score in an innings. A. 80 B. 40 C. 140 D. 60 Answer: C Explanation: Let the lowest score of the cricketer be X. Cricketerโ€™s Highest score = X + 100 X + X + 100 = 40 ร— 52 -50 ร— 38 2X+100 = 2080 -1900 2X = 80 X = 40 Highest score is 140 runs. Q110.Of the four numbers, whose average is 60, the first is one-fourth of the sum of the last three. The second number is one-third of the sum of other three, and the third is half of the other three. Find the fourth number. A. 52 B. 48 C. 80 D. 60 Answer: A Explanation: ๐‘ณ๐’†๐’• ๐’•๐’‰๐’† ๐’๐’๐’”. ๐’ƒ๐’† ๐’‚, ๐’ƒ, ๐’„, ๐’… ๐’‚ = ๐Ÿ ๐Ÿ’ (๐’ƒ + ๐’„ + ๐’…) โ‡’ ๐Ÿ’๐’‚ = ๐’ƒ + ๐’„ + ๐’… ๐‘จ๐’—๐’†๐’“๐’‚๐’ˆ๐’† = ๐Ÿ”๐ŸŽ ๐’‚+๐’ƒ+๐’„+๐’… ๐Ÿ’ = ๐Ÿ”๐ŸŽ ๐Ÿ“๐’‚ ๐Ÿ’ = ๐Ÿ”๐ŸŽ โ‡’ ๐’‚ = ๐Ÿ’๐Ÿ– ๐‘บ๐’Š๐’Ž๐’Š๐’๐’‚๐’“๐’๐’š, ๐’ƒ = ๐Ÿ”๐ŸŽ & ๐’„ = ๐Ÿ–๐ŸŽ ๐‘จ๐’๐’”๐’, ๐’Š๐’• ๐’Š๐’” ๐’Œ๐’๐’๐’˜๐’ ๐’•๐’‰๐’‚๐’• ๐’‚๐’—๐’†๐’“๐’‚๐’ˆ๐’† = ๐Ÿ”๐ŸŽ, => ๐’‚ + ๐’ƒ + ๐’„ + ๐’… = ๐Ÿ๐Ÿ’๐ŸŽ => ๐’… = ๐Ÿ“๐Ÿ Q111.The average annual income (in Rs.) of certain group of illiterate workers is A and that of other workers is W. The number of illiterate workers is 11 times that of other workers. Then the average monthly income (in Rs.) of all the workers is : A. ๐ด+๐‘Š 2 B. ๐ด+11๐‘Š 2 C. 1 11๐ด + ๐‘Š D. 11๐ด+๐‘Š 12 Answer: D Explanation: ๐ฟ๐‘’๐‘ก ๐‘กโ„Ž๐‘’ ๐‘›๐‘œ. ๐‘œ๐‘“ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘ค๐‘œ๐‘Ÿ๐‘˜๐‘’๐‘Ÿ๐‘  = ๐‘ฅ ๐‘๐‘œ. ๐‘œ๐‘“ ๐‘–๐‘™๐‘™๐‘–๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘ค๐‘œ๐‘Ÿ๐‘˜๐‘’๐‘Ÿ๐‘  = 11๐‘ฅ ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘›๐‘œ ๐‘œ๐‘“ ๐‘ค๐‘œ๐‘Ÿ๐‘˜๐‘’๐‘Ÿ๐‘  = 11๐‘ฅ + ๐‘ฅ = 12๐‘ฅ ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘–๐‘›๐‘๐‘œ๐‘š๐‘’ ๐‘œ๐‘“ ๐‘–๐‘™๐‘™๐‘–๐‘ก๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘’ ๐‘ค๐‘œ๐‘Ÿ๐‘˜๐‘’๐‘Ÿ๐‘  = 11๐‘Š๐‘ฅ ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘–๐‘›๐‘๐‘œ๐‘š๐‘’ ๐‘œ๐‘“ ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ ๐‘ค๐‘œ๐‘Ÿ๐‘˜๐‘’๐‘Ÿ๐‘  = ๐‘ฅ ร— ๐‘Š = ๐‘ฅ๐‘Š ๐ถ๐‘œ๐‘š๐‘๐‘–๐‘›๐‘’๐‘‘ ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘–๐‘›๐‘๐‘œ๐‘š๐‘’ = 11๐ด๐‘ฅ + ๐‘Š๐‘ฅ ๐ด๐‘ฃ๐‘’๐‘Ÿ๐‘Ž๐‘”๐‘’ = 11๐ด๐‘ฅ + ๐‘Š๐‘ฅ 12๐‘ฅ = 11๐ด + ๐‘Š 12 Q112.The average age of a family of 5 members 4 year ago was 24 years. Mean while a child was born in this family and still the average age of the whole family is same today. The present age of the child is: A. 2 years B. 1 1 2 years C. 4 years D. data insufficient Answer: C Explanation: Total age of family of 5 members = 24 ร— 5 + 4 ร— 5 = 140 ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘Ž๐‘”๐‘’ ๐‘œ๐‘“ ๐‘“๐‘Ž๐‘š๐‘–๐‘™๐‘ฆ ๐‘œ๐‘“ 6 ๐‘š๐‘’๐‘š๐‘๐‘’๐‘Ÿ๐‘  = 24 ๐‘ฅ 6 = 144 ๐‘†๐‘œ, ๐‘๐‘Ÿ๐‘’๐‘ ๐‘’๐‘›๐‘ก ๐‘Ž๐‘”๐‘’ ๐‘œ๐‘“ ๐‘โ„Ž๐‘–๐‘™๐‘‘ = 144โ€” 140 = 4 ๐‘ฆ๐‘’๐‘Ž๐‘Ÿ๐‘  Q113.The average of five positive numbers is 99. The averages of the first two and the last two numbers are 117 and 92 respectively. What is the third number? A. 46 B. 54 C. 56 D. 77 Answer: D Explanation: Average of 5 numbers = 99 So, the sum of all 5 numbers = 5ร— 99 = 495 The average of first two numbers = 117 So, sum of first two numbers = 117 ร— 2 = 234 The average of second two numbers = 92 So, sum of second two numbers = 92ร—2 = 184 The sum of 1st, 2nd, 4th and 5th numbers = 234+184 = 418 The fifth number = 495-418 = 77 Q114.The average weight of 16 boys in a class is 50.25 kgs of which 8 playing boys is 45.15 kgs. Find the average weight of the non-playing boys in the class. A. 47.55 kgs B. 48 kgs C. 49.25 kgs D. 55.35 kgs Answer: D Explanation: Total Weight of 16 boys = 16 ร— 50.25 Weight of 8 playing boys = 8 ร— 45.15
Docsity logo



Copyright ยฉ 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved