Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Sets, Logical Implication, and Relations in Automata, Grammars & Languages, Study notes of Computer Science

A lecture note from a university course on automata, grammars & languages. It covers the concepts of sets, logical implication, and binary relations. The definitions and properties of sets, logical implications, and binary relations, as well as their applications in computer science. It also includes examples and exercises.

Typology: Study notes

Pre 2010

Uploaded on 08/31/2009

koofers-user-0jz
koofers-user-0jz 🇺🇸

10 documents

1 / 16

Toggle sidebar

Partial preview of the text

Download Sets, Logical Implication, and Relations in Automata, Grammars & Languages and more Study notes Computer Science in PDF only on Docsity! CSC 473 Automata, Grammars & Languages 8/22/2007 Lecture 02 1 C SC 473 Automata, Grammars & Languages Theory of Computation Lecture 02 Preliminaries C SC 473 Automata, Grammars & Languages 2 Sets • Set: primitive notion of “aggregate”—from which all of mathematics and logic can be constructed • One small hierarchy of concepts in this course: set tuple integer rational real relation function sequence string Grammar ( , , , )G V R S= Σ derives G ⇒ C SC 473 Automata, Grammars & Languages 3 Sets (cont’d) • Predicate P(x): a statement about a variable x that is true or false when x is replaced by a particular object  P(x) = x is odd  Main predicate for set--membership: “x ∈ A” • Some axioms of set theory  Axiom of Extension: a set is determined by its “extension”:  Axiom of Specification: For every set A and predicate P(x) there is a set of all elements of A for which P is true. • Ex: {x∈Z: x is positive and not prime} = {4,6,8,9,10,12,…} iff ( )A B x x A x B= ∀ ∈ ⇔ ∈ { : ( )}x A P x∈ { : is a string over {a,b}}x x ∗ Σ = Σ = { : ends in letter }L w w b ∗ = ∈ Σ { : 3 ( )( )( )[ 0 0 0 } n n n F n n x y z x y z x y z = ∈ ≥ ∧ ∃ ∃ ∃ > ∧ > ∧ > ∧ + = N CSC 473 Automata, Grammars & Languages 8/22/2007 Lecture 02 2 C SC 473 Automata, Grammars & Languages 4 Sets (cont’d) • Operations and relations on sets  subset  proper subset  union  intersection  complement  difference  size of set • Special sets  empty set  natural numbers  integers • Sets of sets  Power set A B⊆ A B⊂ A B∩ A B∪ A ∅ {0,1, }= …N { 2, 1,0,1,2 }= − −… …Z A ( ) { : } 2 A A X X A= ⊆P A B− C SC 473 Automata, Grammars & Languages 5 Logical Implication (Material implication) • R → S If you do not pay us $1M by midnight (R), we will shoot your ambassador (S) FF ~shotT ~pay TT shotF pay TF ~shotF pay TT shotT ~pay R→SSR C SC 473 Automata, Grammars & Languages 6 Logical Implication (cont’d) • P → Q If you pay us $1M by midnight (P), we will not shoot your ambassador (Q) FF shotT pay TT ~shotF ~pay TF shotF ~pay TT ~shotT pay P→QQP CSC 473 Automata, Grammars & Languages 8/22/2007 Lecture 02 5 C SC 473 Automata, Grammars & Languages 13 Why Relations? Generalize Functions. • Ex: functions • Ex: division with remainder E ⊆ N×N×N×N • Ex: circle C ⊆ R×R • Ex: Relational Database • Grammar “derives” relation 2 issquareof( , ) issquareof {(0,0),(1,1),(2,4),(3,9), } y x x y= = … ( , , , ) 0 {(1,1,1,0),(1,2,0,1), ,(5,3,1,2), } E n m q r n mq r r m E ⇔ = + ∧ ≤ < = … … 2 2 {( , ): }C x y x y= + 13 R Time Faculty Room R Time Roomπ ⊆ × × ⊆ × * G G G E N E E N E E N ⇒ ⇒ + ⇒ C SC 473 Automata, Grammars & Languages 14 Relational Calculus 1 {( , ):( , ) } If , then {( , ):( )( , ) ( , ) } R A B R b a a b R R A B S B C R S a c b B a b R b c S − ⊆ × = ∈ ⊆ × ⊆ × = ∃ ∈ ∈ ∧ ∈ • • • • • • • • • • • A B C R S a c b C SC 473 Automata, Grammars & Languages 15 Relational Inverse • R ⊆ A × B • ________________ • < • ⊆ • FatherOf • DivisorOf • Hits • • R -1 ⊆ B × A • _______________ • > • ⊇ • ChildOf • MultipleOf • Is hit by • R R-1 A B B A CSC 473 Automata, Grammars & Languages 8/22/2007 Lecture 02 6 C SC 473 Automata, Grammars & Languages 16 The Calculus • • Proposition. If A A {( , ): } A I a a a A= ∈ , , ,R A B S B C T C D⊆ × ⊆ × ⊆ × 1 1 1 1 1 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) B A R S T R S T R S S R R R R I I R R R S R S R S T R T S T R R − − − − − − − − = = = = = ∪ = ∪ ∪ = ∪ ∅ = ∅ = ∅              C SC 473 Automata, Grammars & Languages 17 Proving a Proposition about Relations • Thm. • Pf: (a) Let Then and by definition of °. So and so Since (c, a) was chosen arbitrarily, (b) Let Then and So implying Hence Since (c,a) was chosen arbitrarily, (b) follows.  1 1 1 ( )R S S R − − − =  1 1 1 ( )R S S R − − − ⊆  1 ( , ) ( ) .c a R S − ⊆  ( b B)(a,b) R (b,c) S∃ ∈ ∈ ∧ ∈ 1 1 ( , ) and ( , )b a R c b S − − ⊆ ∈ 1 1 ( , ) .c a S R − − ⊆  1 1 1 ( ) .R S S R − − − ⊆  1 1 1 ( )S R R S − − − ⊆  1 1 ( , ) .c a S R − − ⊆  1 (b,a) .R − ∈ -1 ( b B)(c,b) S∃ ∈ ∈ (b,c) S (a,b) R,∈ ∧ ∈ (a,c) .R S∈  1 ( , ) ( ) .c a R S − ⊆  (a,c) R S∈  C SC 473 Automata, Grammars & Languages 18 Relational Properties R ⊆ A×B Relational calculus predicate calculus name 1 1 1 1 . total ( ) . single- b=c valued . 1-1 =c (injection) . onto (surjection) ( ) A B A B R R I a b aRb dom R A R R I abc aRb aRc R R I acb aRb cRb a R R I b aaRb range R B − − − − ⊇ ∀ ∃ = ⊆ ∀ ∧ ⇒ ⊆ ∀ ∧ ⇒ ⊇ ∀ ∃ =     -1 1 1 (1): .( , ) .( ) . . Pf a A a a R R aaR R a a b aRb bR a a b aRb − − ∀ ∈ ∈ ⇔ ∀ ⇔ ∀ ∃ ∧ ⇔ ∀ ∃   -1 -1 (2): . ( ) [ . ] [ . ] (3): like 2. (4): like 1. Pf bb b R R b b b bb a bR a aRb b b bb aaRb aRb b b Pf Pf ′ ′ ′∀ → = ⇔ ′ ′ ′∀ ∀ ∧ → = ⇔ ′ ′ ′∀ ∀ ∧ → =  CSC 473 Automata, Grammars & Languages 8/22/2007 Lecture 02 7 C SC 473 Automata, Grammars & Languages 19 Family Relationships i c h b f g d ea is Parent of xPy x y≡ 1 2 2 2 1 1 1 1 , 0 n P P P PP P P P n P P P P P P I PP − − − − − ≡ ≡ ≥ ∩  Self (er…asexual reproduction only …) is Child of Grandparent Great n Grandparent Parent Sibling …Sibling or self! Sibling …Parent (of child with offspring!) P F F⊆ × C SC 473 Automata, Grammars & Languages 20 Family Relationships (cont’d) i c h b f g d ea 2 2 1 1 2 2 3 2 3 2 1 2 3 2 2 3 2 3 ( ) ( ) P P P P P P PP P P P P P P P P P P P P P P P − − − − − − − − − + = = ∪ ∪ ∪ ∪ ≡ ∪ ∪ ∪   Nephew, niece … or child Uncle, Aunt or … 1st Cousin Once Removed…or … 1st Cousin Once Removed or … Ancestor Transitive closure of P Parent or Grandparent Child (w. offspring) C SC 473 Automata, Grammars & Languages 21 Binary Relations on A to itself (A) • Ex: 0 1 i i A R A A S A A R S R S R A A R R R R R R I R R ⊆ × ⊆ × ∪ ∩ = × − = = =      2 3 2 3 [ 1] { { { { { Thm. ( ) xRy y x R R R R R R R R R R I R R I + ∗ + ∗ + ≡ = + ⊆ × = = = = ∪ ∪ ∪ = ∪ = = ∪   N N CSC 473 Automata, Grammars & Languages 8/22/2007 Lecture 02 10 C SC 473 Automata, Grammars & Languages 28 Relations, Digraphs, Matrices (cont’d) 2 3 4 1 1 1 1 1 1 1 1 ( ) ( ) 0 0 0 1 0 0 0 0 ( ) R R R R R M R M R G R + + + + = ∪ ∪ ∪      = =       = a b c d C SC 473 Automata, Grammars & Languages 29 Transitive Closure (finite graph) a b c d a b c d a b c d a b c d R 2 R+ 3 R+ R + = 24 RR =+ C SC 473 Automata, Grammars & Languages 30 Transitive Closure ≡ Reachability • Defn: a reaches b in relation (digraph) R iff • Prop: a reaches b in R iff aR+b • Thm: Let be a relation where Then Pf: Longest possible path in G(R+) that will not repeat an edge is of length n. This path will result in an edge in Rn. • Ex: may need to go up to Rn 0 1 0 1 ( 0. .) ( ,0 1.) k k i i k a a a a a a b i i k a Ra + ∃ > ∃ = ∧ = ∧ ∀ ≤ ≤ − … R A A⊆ × | | .A n= 2 . n R R R R + = ∪ ∪ ∪ a b c a b c a b cR 2 R 3 R CSC 473 Automata, Grammars & Languages 8/22/2007 Lecture 02 11 C SC 473 Automata, Grammars & Languages 31 Strings and Languages • In this course, a “language” is simply a set of strings; a “programming language” is much more complex • alphabet Σ - a finite set of symbols • String (word) over Σ - finite sequence of symbols • ε - the empty or null string • |w| - length of string w  What is a string precisely? String w of length n is a function • String ops  concatenation  powers ε ≠ ∈ : {1, , } ( ) th symbol w n w j j → Σ = … 0 1 ( ) ( ) i i x y xy xy z x yz x x x w w w w ε ε ε + ⋅ = = = = = = C SC 473 Automata, Grammars & Languages 32 Strings and Languages (cont’d) • Σ∗ = {w: w is a string over Σ} ε ∈ Σ∗ • Language L over Σ - a subset L ⊆ Σ∗ • Ex: • Ex: Σ = ASCII codes ( = blank = \040 = ∈ Σ ) 0 1 2 3 2 4 { , } { : prime} { , , , } {( ) : } n n a b L L L a n L aa ab ba bb L ab n ∗ Σ = = ∅ = Σ = = = ∈ N ㄷ { } {}ε∅ ≠ ≠ ㄷ C SC 473 Automata, Grammars & Languages 33 Strings and Languages (cont’d) • Language ops  Set operators  Concatenation  Powers • Ex: • Ex: 1 2 1 2 1 2 1 2 , , , L L L L L L L L L L ∗ ∗ ∗ ⊆ Σ ⊆ Σ ∪ ∩ − = Σ − 1 2 1 2 { : }L L x y x L y L⋅ = ⋅ ∈ ∧ ∈ 0 1 { } i i L L L Lε += = ⋅ 1 2 1 2 { , } { , } { , } { , , } a b L a ab L bc c L L abc ac abbc Σ = = = ⋅ = 2 3 4 3 4 3 3 3 2 1 3 { : } { , } ({ } { }) { } { } { : } { : } n n i L a n L a L L L a L a L a n L a i ε ε ε + = ∈ = = ∪ = ∪ = ∈ ∪ = ∈ N N N CSC 473 Automata, Grammars & Languages 8/22/2007 Lecture 02 12 C SC 473 Automata, Grammars & Languages 34 Strings and Languages (cont’d) • Language ops (cont’d)  Defn: Kleene Closure (Star)  Note:  Defn: • Ex: • Ex: 1 1 2 { :( 0)( , , ) } k k L w k w w L w w w w ∗ = ∃ ≥ ∃ ∈ = …  { , } { } { : has one } { }{ }{ } { : has one } {} {} ? a b a w w at least a b a b w w exactly a a a ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ = Σ Σ = ∈ Σ = ∈ Σ Σ Σ Σ = Lε ∗∈ L LL + ∗ = { }ε∗ +∅ = ∅ = ∅ C SC 473 Automata, Grammars & Languages 35 Strings and Languages (cont’d) • Theorem: • Pf: • Ex: 1 1 2 ( 0)( ) ( ) } ( 0) k k k w L k w L w L w w w w k w L ∗ ∈ ⇔ ∃ ≥ ∃ ∈ ∃ ∈ = ⇔ ∃ ≥ ∈ …  { , } {{ }{ } { }{ } { }{ }{ }{ } { }{ }{ }{ }{ }{ } } { } { } { }{ : 0 } { }{ : 1 } { }{ : 2 } { }{ : 3 } { } { } { : 0 1 2 3 } { } { } { , } a b b a b a b a b a b a b a b a b w b b w b b w b b w b b w b b b b b a b ε ε ε ε ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ = = ∪ ∪ ∪ ∪ = ∪ ∪ ∪ ∪ ∪ = ∪ ⋅ ∨ ∨ ∨ ∨ = ∪ ⋅    0 1 2 0 i i L L L L L ∞ ∗ = = ∪ ∪ ∪ = ∪ C SC 473 Automata, Grammars & Languages 36 Strings and Languages (cont’d) • Ex: • Ex: • Ex: {{ }{ }}a b ∗ ∗ ∗ = ( { })L ε ∗∪ = 2 3 { , } ? L a a L ∗ = = 2 { } { }{}a aε ∗∪ { , }a b ∗ L ∗ CSC 473 Automata, Grammars & Languages 8/22/2007 Lecture 02 15 C SC 473 Automata, Grammars & Languages 43 Parentheses (cont”d) ( ( ( ) ( ) ) ( ( ( ) ) ) ) ( ) ) ( ( ) ( ) | | | |D x x x= − ( ( D x C SC 473 Automata, Grammars & Languages 44 Parentheses (cont’d) • Thm: A word w is balanced iff it has the prefix property. • Lemma 1: w balanced ⇒ w has prefix property C. Pf: Induction on |w| Base: |w|=0 ⇒ w=ε ⇒ w satisfies C. Step: Let |w|=n. Assume (IH) all strings shorter than n that are balanced satisfy C. Let w be balanced. Two cases are possible: Case w=uv where u,v are balanced. By IH, u, v satisfy C. Then and so w satisfies C(a). Next consider a prefix s of w=uv. If s is a prefix of u then because by IH, then w satisfies C(b) for this prefix. ( ( ( ) ) ) | | | | | | | | | | | |w u v u v w= + = + = ( ) | | | |s s≥ C SC 473 Automata, Grammars & Languages 45 Parentheses (cont’d) If s = ut where t is a prefix of v then by IH, and so and so w satisfies C(b) in this case. Case w=(u) where u is balanced. By IH u satisfies C, and so clearly so does (u)  ( ( ( ) ( ) ) ) | | | | | | | | | | | | | | | | s u t u t u t s = + = + ≥ + = ( ) | | | |t t≥ CSC 473 Automata, Grammars & Languages 8/22/2007 Lecture 02 16 C SC 473 Automata, Grammars & Languages 46 Parentheses (cont’d) • Lemma 2: w satisfies C ⇒ w is balanced. Pf: Induction on |w| Base: w=ε is balanced by definition. Step: Let |w|=n >0. Assume (IH) all strings shorter than n that satisfy C are balanced. Let w have prefix property C. Let x be the shortest prefix of w such that Such a prefix exits since w has this property. Case x=w Then w =(u) where u satisfies C. By IH, u is balanced, and so then so is w. Case xv=w with v≠ε. Now x satisfies C(a) by assumption and satisfies C(b) since w does. So by IH x is balanced. ( ) | | | |x x= C SC 473 Automata, Grammars & Languages 47 Parentheses (cont’d) We claim that v has property C. Since and then and so v satisfies C(a). Suppose there were a prefix y of v such that Then Which would violate the prefix property of w. Thus it must be that So v satisfies C(b). By IH, v is balanced. Since both x and v are balanced, w=xv is balanced.  ( ) | | | |x x= ( ) | | | |v v=( )| | | |w w= ( ) | | | |.y y< ( ) | | | |,xy xy< ( ) | | | |.y y≥
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved