Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solutions to Quantum Mechanics Homework Set 7: Calculating Eigenvalues and Eigenvectors, Assignments of Quantum Mechanics

The solutions to problem 1 and problem 2 from homework set 7 of the quantum mechanics course (phy 389k). The problems involve calculating matrix representations, eigenvalues, and eigenvectors using the given hamiltonian matrix h and the basis {|3 2⟩, |−1 2⟩, |−3 2⟩, |1 2⟩}.

Typology: Assignments

Pre 2010

Uploaded on 08/26/2009

koofers-user-6d2
koofers-user-6d2 🇺🇸

5

(1)

10 documents

1 / 3

Toggle sidebar

Related documents


Partial preview of the text

Download Solutions to Quantum Mechanics Homework Set 7: Calculating Eigenvalues and Eigenvectors and more Assignments Quantum Mechanics in PDF only on Docsity! PHY 389K Quantum Mechanics, Homework Set 7 Solutions Matthias Ihl 04/01/2008 Note: I will post updated versions of the homework solutions on my home- page: http://zippy.ph.utexas.edu/~msihl/teaching.html 1 Problem 1 1. By Theorem (3.10.27) on p.237 of Sakurai, T (2) 2 = 〈11; 11|11; 22〉X+1X+1 = 12(x + iy)2 = 12(x2 − y2 + 2ixy) T (2) 1 = 〈11; 10|11; 21〉X+1X0 + 〈11; 01|11; 21〉X0X1 = −1 2 (x + iy)z − 1 2 (x + iy)z = −xz − iyz T (2) 0 = 〈11; 00|11; 20〉X0X0 + 〈11; 1 − 1|11; 20〉X+1X−1 + 〈11;−11|11; 20〉X−1X+1 = 2√ 6 z2 + 1√ 6 (−1 2 (x2 + y2) + 1√ 6 (−1 2 (x2 + y2) = 1√ 6 (3z2 − r2) T (2) −1 = 〈11; 0 − 1|11; 2− 1〉X0X−1 + 〈11;−10|11; 2− 1〉X−1X0 = 1 2 (x − iy)z + 1 2 (x − iy)z = xz − iyz T (2) −2 = 〈11;−1 − 1|112 − 2〉X−1X−1 = 12(x − iy)2 = 12(x2 − y2 − 2ixy) Therefore, xy = T (2) 2 −T (2) −2 2i = − i 2 (T (2) 2 − T (2) −2 ) xz = T (2) −1 −T (2) 1 2 = −1 2 (T (2) 1 − T (2) −1 ) x2 − y2 = T (2)2 + T (2) −2 1 2. Q ≡ e〈α, j, j| √ 6T (2) 0 |α, j, j〉 = √ 6e〈α, j, j|T (2)0 |α, j, j〉 = √ 6e〈j, 2; j, j|j, 2; j, 0〉a,j||T 2||α,j〉√ 2j+1 Therefore, e〈α, j, m′|x2 − y2|α, j, m = j〉 = e〈α, j, m|T (2)2 + T (2) −2 |α, j, m〉 = e〈α, j, m′|T (2)−2 |α, j, m〉 = e〈j, 2; j, m′|j, 2; j,−2〉 〈α,j||T 2||α,j〉√ 2j+1 = Q√ 6 〈j,2;j,m′|j,2;j,−2〉 〈j,2;j,j|j,2;j,0〉 2 Problem 2 For convenience, let α = eQ 2s(s−1)~2 .And assume H = α(φxxS 2 x + φyyS 2 y + φzzS 2 z ) = A(3S 2 z − S2) + B(S2+ + S2−) (1) holds. Then, H = α(φxxS 2 x + φyyS 2 y + φzzS 2 z ) = A(3S 2 z − S2) + B(S2+ + S2−) = A(2S2z − S2x − S2y + B(2S2x − 2S2y) = (−A + 2B)S2x + (−A − 2B)S2y + 2AS2z Comparing the coefficients of S2x and S 2 y , A = −α(φxx + φyy) 2 and B = α(φxx − φyy) 4 Because φxx + φyy + φzz = 0, αφzz = 2A = −α(φxx + φyy)(the coefficients of S2z ). So, indeed, the equality (1) holds with A = − eQ 4s(s − 1)(φxx + φyy) and B = eQ 8s(s − 1)(φxx − φyy) • Eigenvectors and eigenvalues H|3 2 〉 = 3A|3 2 〉 + 2 √ 3B| − 1 2 〉 H|1 2 〉 = −3A|1 2 〉 + 2 √ 3B| − 3 2 〉 H| − 1 2 〉 = −3A| − 1 2 〉 + 2 √ 3B|3 2 〉 H| − 3 2 〉 = 3A| − 3 2 〉 + 2 √ 3B|1 2 〉
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved