Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Problem Set 9 Solutions - Quantum Field Theory | PHY 396K, Assignments of Physics

Material Type: Assignment; Class: QUANTUM FIELD THEORY I; Subject: Physics; University: University of Texas - Austin; Term: Unknown 2008;

Typology: Assignments

Pre 2010

Uploaded on 08/30/2009

koofers-user-3w2-3
koofers-user-3w2-3 🇺🇸

5

(1)

10 documents

1 / 11

Toggle sidebar

Related documents


Partial preview of the text

Download Problem Set 9 Solutions - Quantum Field Theory | PHY 396K and more Assignments Physics in PDF only on Docsity! PHY–396 K. Solutions for problem set #9. Problem 1(a): For p = 0, p0 = +m and 6p−m = m(γ0 − 1). Hence, u(p = 0, s) satisfy (γ0 − 1)u = 0, or in the Weyl basis ( −12×2 12×2 12×2 −12×2 ) u = 0 =⇒ u = ( ζ ζ ) (S.1) where ζ is an arbitrary two-component spinor. It’s normalization follows from u†u = 2ζ†ζ, so we want ζ†ζ = Ep = m. In other words, ζ = √ m× ξ — and hence u is as in eq. (2) — where ξ†ξ = 1. There are two independent choices of ξ, normalized to ξ†sξs′ = δs,s′ so that u †(0, s)u(0, s′) = 2mδs,s′ = 2Epδs,s′ . They correspond to two spin states of a p = 0 electron. Indeed, in the Weyl basis where the spin matrices are S = 1 2 ( σ 0 0 σ ) (cf. problem 8.4(a) of the previous homework set), we have u†(0, s)Su(0, s′) = 2m× ξ†s σ 2 ξs′ . (S.2) Problem 1(b): Dirac equation is Lorentz covariant, so we may obtain solutions for all pµ = (+Ep,p) by simply Lorentz-boosting the solutions (2) for pµ = (+m,0), u(p, s) = M u(0, s) = ( ML 0 0 MR )(√ m ξs √ m ξs ) = (√ m ML ξs √ m MR ξs ) (S.3) where M , ML, and MR are respectively Dirac-spinor, LH–Weyl-spinor, and RH–Weyl-spinor rep- resentations or the Lorentz boost (m,0) 7→ (E,p). In problem 8.4.(c) of the previous homework 1 we saw that ML = √ γ × √ 1− βn · σ , MR = √ γ × √ 1 + βn · σ , (S.4) where βn is the velocity vector of the boost (in units of c) and γ = 1/ √ 1− β2. For the boost we are interested in, γ = E m , γβn = p m , (S.5) so m× γ × (1∓ βn · σ) = E ∓ p · σ (S.6) and hence √ m ML = √ E − p · σ , √ m MR = √ E + p · σ . (S.7) Plugging these matrices into eq. (S.3) gives us u(p, s) = (√ E − p · σ ξs √ E + p · σ ξs ) . (3) Q.E .D. Problem 1(c): v(p, s) = γ2u∗(p, s) = ( 0 +σ2 −σ2 0 ) × (√ E − p · σ ξs √ E + p · σ ξs )∗ = ( +σ2 (√ E + p · σ )∗ × ξ∗s −σ2 (√ E − p · σ )∗ × ξ∗s ) = ( +σ2 (√ E + p · σ )∗ σ2 × ηs −σ2 (√ E − p · σ )∗ σ2 × ηs ) where ηs def = σ2 × ξ∗s = ( + √ E − p · σ × ηs − √ E + p · σ × ηs ) because σ2 σ ∗σ2 = −σ =⇒ σ2 (√ E ± p · σ )∗ σ2 = √ E ∓ p · σ . (S.8) This verifies eq. (4) for the negative-energy plane waves. 2 Now consider the Lorentz invariant products ūu and v̄v. The ū and v̄ are given by ū(p, s) = u†(p, s)γ0 = (√ E − p · σ ξs √ E + p · σ ξs )†( 0 12×2 12×2 0 ) = ( ξ†s × √ E + p · σ , ξ†s × √ E − p · σ ) , v̄(p, s) = v†(p, s)γ0 = ( + √ E − p · σ ηs − √ E + p · σ ηs )†( 0 12×2 12×2 0 ) = (−η†s × √ E + p · σ , +η†s × √ E − p · σ ) . (S.19) Consequently, ū(p, s) u(p, s′) = ξ†s ×× √ E + p · σ ×× √ E − p · σ × ξs′ + ξ†s ×× √ E − p · σ ×× √ E + p · σ × ξs′ = 2m× ξ†sξs′ = 2mδs,s′ (S.20) because √ E + p · σ× √ E − p · σ = √ E − p · σ× √ E + p · σ = √ E2 − (p · σ)2 = √ E2 − p2 = m. (S.21) Likewise, v̄(p, s) v(p, s′) = − η†s ×× √ E + p · σ ×× √ E − p · σ × ηs′ − η†s ×× √ E − p · σ ×× √ E + p · σ × ηs′ = − 2m× η†sηs′ = −2mδs,s′ . (S.22) Problem 1(f): In matrix notations (column× row = matrix), we have u(p, s)× u(p, s) = (√ E − pσ ξs √ E + pσ ξs ) × ( ξ†s √ E + pσ , ξ†s √ E − pσ ) = (√ E − pσ ξs × ξ†s √ E + pσ √ E − pσ ξs × ξ†s √ E − pσ √ E + pσ ξs × ξ†s √ E + pσ √ E + pσ ξs × ξ†s √ E − pσ ) . (S.23) 5 Summing over two spin polarizations replaces ξs × ξ†s with ∑ s ξs × ξ † s = 12×2 . Consequently,∑ s u(p, s)× u(p, s) = = (√ E − pσ [∑ s ξs × ξ † s ]√ E + pσ √ E − pσ [∑ s ξs × ξ † s ]√ E − pσ √ E + pσ [∑ s ξs × ξ † s ]√ E + pσ √ E + pσ [∑ s ξs × ξ † s ]√ E − pσ ) = (√ E − pσ × √ E + pσ √ E − pσ × √ E − pσ √ E + pσ × √ E + pσ √ E + pσ × √ E − pσ ) = ( m E − pσ E + pσ m ) = m× 14×4 + E × γ0 − p · ~γ = 6p + m. (S.24) Similarly v(p, s)× v(p, s) = ( + √ E − pσ ηs − √ E + pσ ηs ) × ( −η†s √ E + pσ , +η†s √ E − pσ ) = ( − √ E − pσ ( ηs × η†s )√ E + pσ + √ E − pσ ( ηs × η†s )√ E − pσ + √ E + pσ ( ηs × η†s )√ E + pσ − √ E + pσ ( ηs × η†s )√ E − pσ ) , (S.25) where ηs × η†s = σ2 ( ξ†s × ξs )∗ σ2 and hence ∑ s ηs × η†s = σ2 (∑ s ξ†s × ξs )∗ σ2 = σ21 ∗ 2×2σ2 = 12×2 . (S.26) Therefore, ∑ s v(p, s)× v(p, s) = ( − √ E − pσ × 12×2 × √ E + pσ + √ E − pσ × 12×2 × √ E − pσ + √ E + pσ × 12×2 × √ E + pσ − √ E + pσ × 12×2 × √ E − pσ ) = ( −m E − pσ E + pσ −m ) = −m× 14×4 + E × γ0 − p · ~γ = 6p − m. (S.27) Q.E .D. 6 Problem 1(g): The constant spinors u ≡ u(p, s) and ū′ ≡ ū(p′, s′) satisfy Dirac equations 6pu = mu and ū′6p′ = mū′. Applying both equations to the Dirac “sandwich” ū′γµu, we have ū′γµu = 1 m ū′6p′ × γµu = 1 m ū′γµ×6pu = 1 2m ū′(6p′γµ + γµ6p)u. (S.28) On the right hand side, we evaluate 6p′γµ + γµ6p ≡ p′νγνγµ + pνγµγν = p′ν (gµν + 2iSµν) + pν (gµν − 2iSµν) = (p′ + p)ν × gµν + 2i(p′ − p)ν × Sµν , (S.29) which gives us the Gordon identity ū′γµu = (p′ + p)µ 2m ū′u + i(p′ − p)ν m ū′Sµνu. (3) Q.E .D. Problem 1(h): The negative-frequency spinors v ≡ v(p, s) and v̄′ ≡ v̄(p′, s′) satisfy Dirac equations 6pv = −mv and v̄′6p′ = −mv̄′. Consequently, proceeding exactly as above modulo signs, we have ū′γµv = (p′ − p)µ 2m × ū′v + i(p ′ + p)ν m × ū′Sµνv, v̄′γµu = (−p′ + p)µ 2m × v̄′u + i(−p ′ − p)ν m × v̄′Sµνu, v̄′γµv = (−p′ − p)µ 2m × v̄′v + i(−p ′ + p)ν m × v̄′Sµνv. (S.30) 7 The second equality here follows by transposition of the Dirac “sandwich” Ψ> · · ·Ψ∗, which carries an extra minus sign because the fermionic fields Ψ and Ψ∗ anticommute with each other. The third equality follows from (γ0)> = +γ0, (γ2)> = +γ2, and Ψ† = Ψγ0. Problem 2(e): By inspection, 1c ≡ γ0γ2γ0γ2 = +1. The γ5 matrix is symmetric and commutes with the γ0γ2, hence γc5 = +γ5. Among the four γµ matrices, the γ1 and γ3 are anti-symmetric and commute with the γ0γ2 while the γ0 and γ2 are symmetric but anti-commute with the γ 0γ2; hence, for all four γµ, γ c µ = −γµ. Finally, because of the transposition involved, (γµγν)c = γcνγcµ = +γνγµ, hence (γ[µγν])c = +γ[νγµ] = −γ[µγν]. Likewise, (γ5γµ)c = (γµ)c(γ5)c = −γµγ5 = +γ5γµ. Therefore, according to eq. (S.37), the scalar S, the pseudoscalar P , and the axial vector Aµ are C–even, while the vector Vµ and the tensor Tµν are C–odd. Problem 2(f): As discussed in class, in the Weyl fermion language, the Lagrangian for χ, χ̃ and their hermitian conjugates is obviously invariant under the charge conjugation C : χ ↔ χ̃. In the Dirac-spinor language, this is less obvious, hence this exercise. In the previous question we saw that ΨΨ is C–even, which means that the mass term −mΨΨ is C–invariant. For the rest of the Lagrangian, we have C : Ψ6∂Ψ 7→ −Ψ>γ2γ0γµ∂µγ2Ψ∗ = + ( ∂µΨ † ) ( γ2γ0γµγ2 )> Ψ = + ( ∂µΨ ) γ0γ2 (γµ)> γ0γ2Ψ = − ( ∂µΨ ) γµΨ = +Ψ6∂Ψ − ∂µ ( ΨγµΨ ) . (S.38) The second line here follows by transposition of the Dirac ‘sandwich’ Ψ> · · · ∂µΨ∗, and the sign changes because of Fermi statistics (Ψα and Ψ ∗ β anticommute). The fourth line follows from γ0γ2 (γµ)> γ0γ2 = −γµ (S.39) in the Weyl basis, which in terms follows from γ1 and γ3 being anti-symmetric matrices commuting with the γ0γ2, while γ0 and γ2 are symmetric matrices anticommuting with the γ0γ2. 10 Altogether, we have C : L = Ψ(i6∂ −m)Ψ 7→ L + a total derivative, (S.40) and the Dirac action ∫ d4xL is C–invariant. 11
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved