Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Quantization of Lattice Waves: From Lattice Waves to Phonons, Lecture notes of Quantum Mechanics

The quantization of lattice waves and the transition from classical to quantum descriptions. It covers topics such as the simple harmonic oscillator in quantum mechanics, phonons, and the Hamiltonian operator. The document also introduces new operators and commutation relations. The lecture is part of the ECE 407 course taught by Farhan Rana at Cornell University in Spring 2009.

Typology: Lecture notes

Pre 2010

Uploaded on 05/11/2023

damyen
damyen 🇺🇸

4.4

(27)

35 documents

1 / 8

Toggle sidebar

Related documents


Partial preview of the text

Download Quantization of Lattice Waves: From Lattice Waves to Phonons and more Lecture notes Quantum Mechanics in PDF only on Docsity! 1 ECE 407 – Spring 2009 – Farhan Rana – Cornell University Handout 20 Quantization of Lattice Waves: From Lattice Waves to Phonons In this lecture you will learn: • Simple harmonic oscillator in quantum mechanics • Classical and quantum descriptions of lattice wave modes • Phonons – what are they? ECE 407 – Spring 2009 – Farhan Rana – Cornell University Classical Simple Harmonic Oscillator    txm m tp E o x Total 22 2 2 1 2  x PE      txmxV m tp o x 22 2 2 1 ˆPE 2 KE  Consider a particle of mass m in a parabolic potential In quantum mechanics, the dynamical variables and observables become operators: The total energy is:     22 2 ˆ 2 1 2 ˆˆ ˆ ˆ xm m p HE ptp xtx o x Total xx    2 ECE 407 – Spring 2009 – Farhan Rana – Cornell University Quantum Simple Harmonic Oscillator Review - I 22 2 ˆ 2 1 2 ˆˆ xm m p H o x  x PE   22 2 ˆ 2 1 ˆPE 2 ˆ KE xmxV m p o x  Consider a particle of mass m in a parabolic potential The quantum mechanical commutation relations are:   ipx x ˆ,ˆ Define two new operators: x o o p m ix m a ˆ 2 1 ˆ 2 ˆ     x o o p m ix m a ˆ 2 1 ˆ 2 ˆ     Hamiltonian operator is: ECE 407 – Spring 2009 – Farhan Rana – Cornell University Quantum Simple Harmonic Oscillator Review - II x o o p m ix m a ˆ 2 1 ˆ 2 ˆ     x o o p m ix m a ˆ 2 1 ˆ 2 ˆ     The quantum mechanical commutation relations are:     1ˆ,ˆˆ,ˆ  aaipx x  The Hamiltonian operator can be written as:         2 1 ˆˆˆ 2 1 2 ˆˆ 22 2 aaxm m p H oo x   The Hamiltonian operator has eigenstates that satisfy:n  .............3,2,1,0ˆˆ  nnnnaa nnnaanH oo               2 1 2 1 ˆˆˆ   5 ECE 407 – Spring 2009 – Farhan Rana – Cornell University From Classical to Quantum Description                    k j kjkj j j tRutRuRRK dt tRudM E ,, 2 1, 2 2   So we have finally:                  FBZ in *2 * ,, 2 ,, 2q tqUtqUq NM dt tqdU dt tqdUNM     Going from classical to quantum description:        nn nn Rp dt tRdu M RutRu    ˆ , ˆ,   The atomic displacements and the atomic momenta become operators: Commutation relations are:        iRpRu nn ˆ,ˆ Lattice wave amplitudes uncoupled in the PE term ECE 407 – Spring 2009 – Farhan Rana – Cornell University From Classical to Quantum Description The amplitudes of lattice waves are now also operators: The commutation relations for the lattice wave amplitudes are:           ','ˆ,ˆˆ,ˆ qqjj N i qPqUiRpRu      The Hamiltonian operator in terms of the lattice wave amplitude operators is:                 FBZ in 2 ,ˆ,ˆ 2 ˆ 2 ˆ q tqUtqUq NM qPqP M N H    can hold only if         tqUtqUetqUtRu q Rqi n n ,,,, * FBZ in .    Classical: Quantum:         tqUqUeqURu q Rqi n n ,ˆˆˆˆ FBZ in .             tqPtqPetqPtRp q Rqi n n ,,,, * FBZ in .    Classical: Quantum:         qPqPeqPRp q Rqi n n     ˆˆˆˆ FBZ in . 6 ECE 407 – Spring 2009 – Farhan Rana – Cornell University From Classical to Quantum Description Define two new operators:                    qP qM N iqU qNM qa qP qM N iqU qNM qa                  ˆ 2 ˆ 2 ˆ ˆ 2 ˆ 2 ˆ                      qaqa N qM iqP qaqa qNM qU           ˆˆ 2 ˆ ˆˆ 2 ˆ        ','ˆ,ˆ qqqaqa    The commutation relations are: Note the inverse expressions:       ','ˆ,ˆ qqN i qPqU   ECE 407 – Spring 2009 – Farhan Rana – Cornell University From Classical to Quantum Description Use the expressions: in the Hamiltonian operator: to get:               FBZ in 2 1 ˆˆˆ q qaqaqH                      qaqa N qM iqP qaqa qNM qU           ˆˆ 2 ˆ ˆˆ 2 ˆ                   FBZ in 2 ,ˆ,ˆ 2 ˆ 2 ˆ q tqUtqUq NM qPqP M N H    7 ECE 407 – Spring 2009 – Farhan Rana – Cornell University From Classical to Quantum Description               FBZ in 2 1 ˆˆˆ q qaqaqH     The final answer: and the commutation relations tell us that: 1) The Hamiltonians of different lattice wave modes are uncoupled 2) The Hamiltonian of each lattice mode resembles that of a simple harmonic oscillator      1ˆ,ˆ  qaqa                FBZ in . FBZ in . ˆˆ 2 ˆˆ q Rqi q Rqi j j j eqaqa qNM eqURu          Finally, the atomic displacements can be expanded in terms of the phonon creation and destruction operators ECE 407 – Spring 2009 – Farhan Rana – Cornell University What are Phonons? Consider the Hamiltonian of just a single lattice wave mode:               2 1 ˆˆˆ qaqaqH    In analogy to the simple harmonic oscillator, its eigenstates, and the corresponding eigenenergies, must be of the form:  .............,,,nn qq 3210 where          qqqq nnqnqaqaqnH                    2 1 2 1 ˆˆˆ  This eigenstate corresponds to phonons in the lattice wave mode • A phonon corresponds to the minimum amount by which the energy of a lattice wave mode can be increased or decreased – it is the quantum of lattice wave energy • A lattice wave mode with phonons means the total energy of the lattice wave above the ground state energy of is • The ground state energy is not zero but equals and corresponds to quantum fluctuations of atoms around their equilibrium positions (but no phonons)   2q     qnq      2q    qn  qn 
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved