Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

RC and RL Circuits - Experiment 10 | PHYS 212, Lab Reports of Physics

Material Type: Lab; Class: General Physics: Electricity and Magnetism; Subject: Physics; University: Penn State - Main Campus; Term: Spring 2007;

Typology: Lab Reports

Pre 2010

Uploaded on 09/24/2009

koofers-user-jxo-2
koofers-user-jxo-2 🇺🇸

10 documents

1 / 8

Toggle sidebar

Related documents


Partial preview of the text

Download RC and RL Circuits - Experiment 10 | PHYS 212 and more Lab Reports Physics in PDF only on Docsity! Experiment 10 RC and RL circuits: Measuring the time constant. Object: The object of this lab is to measure the time constant of an RC circuit and a LR circuit. In addition, one can observe the characteristics of these two circuits and compare them. Pre Lab Assignment: Refer to the theory below. 1. If the time to achieve ½ the maximum voltage (refer to step 11 of the procedure of the RC circuit) across the capacitor in an RC circuit is 0.045 s, what is the capacitance in the circuit if the resistance is 150 Ω? 2. For an RL circuit, the voltage across the inductor drops from 4.0 V to a constant 1.5 V as a current is established. In addition the voltage across a 4.7 Ω resistor builds to a steady 2.5 V. What is the resistance of this less than perfect inductor? (Refer to step 13 of the procedure of the RL circuit for help with this problem.) 3. If it takes 1.2 ms for the voltage across the inductor to drop from 4.0 V to 2.75 V, what is the time constant for the RL circuit in question 2? Hint: What is the fraction of the total change in voltage across the inductor represented by a drop from 4.0 V to 2.75 V? 4. What is the inductance of the RL circuit in questions 2 and 3? Theory: RC Circuit The RC circuit was discussed earlier in the semester. To review: A voltage source will charge a capacitor by moving charge through a resistor until the capacitor is fully charged. The potential difference across the resistor is proportional to the current through the resistor while the potential difference across the capacitor is proportional to the charge on the capacitor. The equations for current through the resistor, and charge on the charging capacitor are 0 tVI e R τ − = and 0 1 t Q CV e τ −⎛ ⎞ = −⎜ ⎟ ⎝ ⎠ where t is time, I is the current in the circuit, Q is the charge on the capacitor, V0 is the source voltage, R is the resistance, C is the capacitance and τ is the time constant and equal to RC. If the voltage source is now disconnected, and the capacitor discharged through the resistor, the potential difference and current through the resistor is now reversed. The current in the resistor and the charge on the capacitor decrease according to max tVI e R τ − = and max t Q CV e τ − = 1/17/2007 1 LR Circuit The LR circuit, shown schematically in Figure 1 behaves similarly. If we close the switch so the voltage source provides current to the circuit (position 1), Kirchhoff’s loop rule yields 0s LV IR− − =E where V0 is the source voltage, I is the current in the circuit, R is the resistance and EL is the induced emf of the inductor. Substituting for the emf of the inductor gives us 0 0 dIV IR L dt − − = We can solve this differential equation readily if we divide by R and then let a new variable x be defined as 0 V I R − . Since 0 V R is a constant, dx dI dt dt = − and the differential equation becomes 0L dxx R dt + = Figure 1. An RL circuit. When the switch is closed toward position 1, a current will begin to flow through the resistor and inductor. If, after a current is established in the circuit, the switch is quickly thrown to position 2, the magnetic field in the inductor will continue to push a current through the circuit until the energy in that field is exhausted. Separating variables and integrating with x = xo when t = 0, yields ln o x R t x L = − First we define L R τ = , then we rewrite the above equation as an exponential equation to give us t o x e x τ − = We note that I = 0 when t = 0, so 0o Vx R = . We then substitute the values for x and xo from above and rearrange the equation to give us the final result that 0 1 tVI e R τ −⎛ ⎞ = −⎜ ⎝ ⎠ ⎟ where L R τ = = the time constant of the circuit. The emf across the inductor is determined by L dIL dt = −E 0 01 t t L V V RL e L e R R L τ τ τ − −⎛ ⎞ ⎛ = − − = − −⎜ ⎟ ⎜ ⎝ ⎠ ⎝ E ⎞ ⎟ ⎠ 1/17/2007 2 capacitor. Be sure to observe the polarity so the red wire is connected to the positive side of each element. 7. Set up to graph the data of both inputs from the voltage sensor on the same graph. 8. Click start to record the data. 9. Click on the Data button (right most button at the top of the graph) and deselect data grouping. Lock the origins of the horizontal axes. Enlarge the data portion of the graph appropriately and print the result. Label your graph as indicated in the analysis section. Maximize the graph window. 10. Turn off the Data Point Gravity by clicking on the Data button (again) and select the Graph Settings window. Set the Data Point Gravity to 0. 11. Click on the smart tool button located at the top of the graph. It looks like coordinate axes. Locate the where the lines cross which show the coordinate values on your graph, click it and drag it to locate the coordinate for the time at the start of the charge cycle for the capacitor. (Hint: Enlarge portions of the graph as necessary so you can read the position accurately.) Record this time. 12. Repeat the click and drag procedure to determine the time when the voltage was ½ of the maximum. Use the fact that t1/2 = τ ln 2 to calculate the time constant. If it is difficult to get an accurate position for the time, you may want to enlarge your graph at this time. 13. Use the same click and drag process to determine t1/2 for the discharge portion of your graph. 14. Repeat steps 10 through 12 to measure the t1/2 times for the voltage across the resistor for both parts of the square wave cycle. 1/17/2007 5 The RL circuit. Figure 3 shows the set up for the RC circuit. Figure 3a. A picture of the circuit board wired for the RL time constant measurements. Figure 3b. 750 Interface Box gnd Ch A + - Ch B + - pos. sq. wave output 1. Double click on one of the voltage sensor icons to get the sensor properties window. Change the sampling rate to 4000 Hz, Fast. 2. Double click on the output window, and set up the following in the signal generator window: Positive Square Wave with an Output of 4.0 V. Change the frequency (of the square wave) to 50 Hz. 3. Select Options from the menu and set auto stop to 0.05 second. 4. Wire the output of the Science Workshop interface to the circuit board as shown. Note that the interface has an output terminal and a ground terminal. The output terminal will be positive in this experiment. The 10 Ω resistor and 8.2 mH inductor are used in this part of the experiment. The inductor will have a resistance as well. 5. Connect the wires of the voltage sensor from one channel to across the resistor and the wires of the voltage sensor from the second channel across the inductor. Be sure to observe the polarity so the red wire is connected to the positive side of each element. 6. Set up to graph the data of both inputs from the voltage sensor on the same graph. Click on the Data button (right most button at the top of the graph) and deselect data grouping. Lock the origins of the horizontal axes. Enlarge the data 1/17/2007 6 portion of the graph appropriately and print the result. Label your graph as indicated in the analysis section. Maximize the graph window. 7. Turn off the Data Point Gravity by clicking on the Data button (again) and select the Graph Settings window. Set the Data Point Gravity to 0. 8. Click start to record the data. 9. Maximize the graph window. Enlarge the data portion of the graph appropriately and print the result. Label your graph as indicated in the analysis section. 10. Click on the smart tool button located at the top of the graph. Locate the where the lines cross which show the coordinate values on your graph, click it and drag it to locate the coordinate for the time at the start of the positive voltage cycle for the resistor. Record this time. 11. Repeat the click and drag procedure to determine the maximum voltage across the resistor. 12. Repeat the click and drag procedure to determine the time when the voltage across the resistor was ½ of the maximum. Use the fact that t1/2 = τ ln 2 to calculate the time constant. If it is difficult to get an accurate position for the time, you may want to enlarge your graph at this time. 13. Use the same click and drag process to determine t1/2 for the decreasing resistor voltage portion of your graph. 14. Repeat the steps 9 through 11 for the inductor voltages. Note that the inductor has a resistance and will not have a zero voltage when the current reaches a steady positive value. You must determine the minimum voltage across the inductor and locate the time taken to determine ½ the change of inductor voltage for increasing current in the circuit. When the current is decreasing the voltage across the inductor will, of course, drop to zero. Again you want to determine the time for the inductor voltage to drop to ½ its maximum value. 15. To determine the resistance of the inductor, first determine the steady constant voltage across resistor R. Apply Ohm’s Law to calculate the current through the 10 Ω resistor. Nest divide this same current into the steady constant voltage across the inductor (Ohm’s Law again) to determine the inductor’s resistance. Analysis and Report: For the RC circuit: 1. Determine the average time constant from your measurements. How does this average compare to the time constant calculated using the values of R and C for the circuit elements you used? 2. On the printed graph of voltage vs. time, label the curve showing the voltage across the resistor, and the curve showing the voltage across the capacitor. Label the period of time corresponding to charging the capacitor, and the period of time corresponding to discharging the capacitor. 1/17/2007 7
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved