Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Maximum Likelihood Estimation and Hypothesis Testing, Study notes of Econometrics and Mathematical Economics

An in-depth explanation of maximum likelihood estimation (mle) and hypothesis testing based on mle. It covers likelihood functions, log-likelihood functions, restricted mle, and various test statistics such as wald test, likelihood ratio test, and lagrange multiplier test. The document also includes examples and their corresponding test statistics.

Typology: Study notes

Pre 2010

Uploaded on 09/02/2009

koofers-user-pj7-2
koofers-user-pj7-2 🇺🇸

10 documents

1 / 15

Toggle sidebar

Related documents


Partial preview of the text

Download Maximum Likelihood Estimation and Hypothesis Testing and more Study notes Econometrics and Mathematical Economics in PDF only on Docsity! MLE-1 REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar. Notational Clarification: • From now on, we denote the true value of θ as θo. • Then, view θ as a variable. Definition: (Likelihood function) • Let {x1, ... , xT} be a sample from a population. • It does not have to be a random sample. • xt is a scalar. • Let f(x1,x2, ... , xT,θo) be the joint density function of x1, ... , xT. • The functional form of f is known, but not θo. • Then, LT(θ) ≡ f(x1, ... , xT, θ) is called “likelihood function”. • LT(θ) is a function of θ given x1, ... , xT. • The functional form of f is known, but not θo. Definition: (log-likelihood function) lT(θ) = ln[f(x1, ... , xT,θ)]. Example: • {x1, ... , xT}: a random sample from a population distributed with f(x,θo). • f(x1, ... , xT, θo) = ∏ . = T t ot xf 1 ),( θ → LT (θ) = f(x1, ... , xT, θ) = ∏ = T t t xf 1 ),( θ . → lT(θ) = ( )∏ =Tt txf1 ),(ln θ = ),(ln θtt xfΣ . Definition: (Maximum Likelihood Estimator (MLE)) MLE MLEθ̂ maximizes lT(θ) given data points x1, ... , xT. Example: • {x1, ... , xT} is a random sample from a population following a Poisson distribution [i.e., f(x,θ) = e-θθx/x! (suppressing subscript “o” from θ)]. • Note that E(x) = var(x) = θo for Poisson distribution. • lT(θ) = Σtln[f(xt,θ)] = -θT + (ln(θ))Σtxt - Σtxt! • FOC of max.: 01/ =Σ+−=∂∂ ttT xT θ θ . • Solving this, MLEθ̂ = T xttΣ = x . MLE-2 (3) Extension to Conditional density Definition: • Conditional density of yt: ( | , )t o tf y xθ , θ = [θ1,θ2, ... , θp]′. • 1( ) ( | , ) T T t tL tf y xθ θ== Π . • lT(θ) = 1( ) ln( ( | , )) T T t tL tf y xθ θ== Σ . Example: • Assume that ( , )t ty x′i iid and ( | ) ~ ( , )t t t of y x N x vβ′i i . • f(yt|xt,β,v) = 2 1 1( | , , ) exp ( ) 22t t t t f y v x y x vv β β π ⎛ ⎞′= − −⎜ ⎟ ⎝ ⎠ i i . • 2 ( , ) ln ( | , , ) 1ln(2 ) ln ( ) 2 2 2 1ln(2 ) ln ( ) ( ) 2 2 2 T t t t t t t l v f y v x T T v y x v T T v y X y X v β β π β π β β = Σ ′= − − − Σ − ′= − − − − − i . • Therefore, we have the following likelihood function of y. • FOC: (i) ∂lT(β,v)/∂β = -(1/2v)[-2X′y + 2X′Xβ] = 0k×1. (ii) ∂lT(β,v)/∂v = -(T/2v) + (1/2v2)(y-Xβ)′(y-Xβ) = 0. • From (i), X′y - X′Xβ = 0k×1 → MLEβ̂ = (X′X) -1X′y = . β̂ From (ii), MLEv̂ = SSE/T. • Thus, we can conclude that β̂ and s2 = SSE/(T-k) are asymptotically efficient. MLE-5 [2] Large Sample Properties of the ML estimator Definition: 1) Let g(θ) = g(θ1, ... , θp) be a scalar function of θ. Let gj = ∂∂g/∂θj. Then, 1 2 : p g gg g θ ⎛ ⎞ ⎜ ⎟ ∂ ⎜ ⎟= ⎜ ⎟∂ ⎜ ⎟ ⎝ ⎠ . 2) Let w(θ) =(w1(θ), ... , wm(θ))′ be a m×1 vector of functions of θ. Let wij = ∂wi(θ)/∂θj. Then, 11 12 1 21 22 2 1 2 ... ...( ) : : : ... p p m m mp m p w w w w w ww w w w θ θ × ⎡ ⎤ ⎢ ⎥∂ ⎢ ⎥= ′ ⎢ ⎥∂ ⎢ ⎥ ⎣ ⎦ . 3) Let g(θ) be a scalar function of θ where gij = ∂2g(θ)/∂θi∂θj. Then, 11 12 1 2 21 22 2 1 2 ... ...( ) : : : ... p p p p pp p p g g g g g gg g g g θ θ θ × ⎛ ⎞ ⎜ ⎟ ∂ ⎜ ⎟= ⎜ ⎟′∂ ∂ ⎜ ⎟ ⎝ ⎠ . → Called Hessian matrix of g(θ). MLE-6 Example 1: Let g(θ) = θ12 + θ22 + θ1θ2. Find ∂g(θ)/∂θ. ( )g θ θ ∂ ∂ = 1 2 2 1 2 2 θ θ θ θ +⎛ ⎞ ⎜ ⎟+⎝ ⎠ . Example 2: Let 2 1 2 2 1 2 ( )w θ θ θ θ θ ⎛ ⎞+ = ⎜ ⎟+⎝ ⎠ . 1 2 2 1( ) 1 2 w θθ θθ ⎛ ⎞∂ = ⎜ ⎟′∂ ⎝ ⎠ . Example 3: Let g(θ) = θ12 + θ22 + θ1θ2. Find the Hessian matrix of g(θ). 2 2 1( ) . 1 2 g θ θ θ ⎛ ⎞∂ = ⎜ ⎟′∂ ∂ ⎝ ⎠ Some useful results: 1) c′: 1×p, θ: p×1 (c′θ is a scalar) → ∂(c′θ)/∂θ = c ; ∂(c′θ)/∂θ′ = c′. 2) R: m×p, θ: p×1 (Rθ is m×1) → ∂(Rθ)/∂θ = R 3) A: p×p symmetric, θ: p×1 (θ′Aθ) → ∂(θ′Aθ)/∂θ = 2Aθ. → ∂(θ'Aθ)/∂θ′ = 2θ'A → ∂(θ′Aθ)/∂θ∂θ′ = 2A. MLE-7 2 2 2 2 3 ( ) ( ) ( ) ( ) 2 t t T t t t t T x vH x T x v μ νθ μ μ ν ν Σ −⎛ ⎞ ⎜ ⎟ − = ⎜ ⎟ Σ − Σ −⎜ ⎟− +⎜ ⎟ ⎝ ⎠ 2 0 ˆˆ( ) 0 ˆ2 ML T ML ML T v H T v θ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥− = ⎢ ⎥ ⎢ ⎥⎣ ⎦ . Hence, 2 ˆ 0ˆˆ , ˆ ˆ20 ML oML oML ML v TN vv v T μμ θ ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ = ≈ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ . MLE-10 [3] Testing Hypotheses Based on MLE General form of hypotheses: • Let w(θ) = [w1(θ),w2(θ), ... , wm(θ)]′, where wj(θ) = wj(θ1, θ2, ... , θp) = a function of θ1, ... , θp. • Ho: The true θ (θo) satisfies the m restrcitions, w(θ) = 0m×1 (m ≤ p). Definition: (Restricted MLE) Let θ be the restricted ML estimator which maximizes lT(θ) s.t. w(θ) = 0. Wald Test: 1ˆ ˆ ˆ ˆ( ) '[ ( ) ( ) ( ) ] ( )TW w W Cov W w ˆθ θ θ θ −′= θ . If θ̂ is a (unrestricted) ML estimator, 1 1ˆ ˆ ˆ ˆ( ) [ ( ){ ( )} ( ) ] ( )T TW w W H W w ˆθ θ θ θ − −′ ′= − θ . Note: Can be computed with any consistent estimator θ̂ and ˆ( )Cov θ . Likelihood Ratio Test: (LR) LRT = 2[lT(θ̂ ) - lT(θ )] . Lagrangean Multiplier (LM) test Define ( )( ) TT ls θθ θ ∂ = ∂ . Then, LMT = sT(θ )′[-HT(θ )]-1sT(θ ). MLE-11 Theorem: Under Ho: w(θ) = 0, WT, LRT, LMT →d χ2(m) . Implication: • Given significance level (α), find a critical value from χ2 table. • Usually, α = 0.05 or α = 0.01. • If WT > c, reject Ho. Otherwise, do not reject Ho. Comments: 1) Wald needs only θ̂ ; LR needs both θ̂ and θ ; and LM needs θ only. 2) In general, WT ≥ LRT ≥ LMT. 3) WT is not invariant to how to write restrictions. That is, WT for Ho: θ1 = θ2 may not be equal to WT for Ho: θ1/θ2 = 1. Example: (1) {x1, ... , xT}: RS from N(μo,vo) with vo known. So, θ = μ. Ho: μ = 0. • w(μ) = μ. • lT(μ) = -(T/2)ln(2π) - (T/2)ln(vo) - {1/(2vo)}Σt(xt-μ)2. • sT(μ) = (1/vo)Σt(xt-μ). • ( )T o TH v μ− = . MLE-12
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved