Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

RLC Circuits - Engineering Circuit Analysis - Lecture Slides, Slides of Electrical Circuit Analysis

These are the Lecture Slides of Engineering Circuit Analysis which includes Units of Volts and Amps, Complex Number, Resistive Component, Series

Typology: Slides

2012/2013

Uploaded on 03/26/2013

abduu
abduu 🇮🇳

4.4

(47)

200 documents

1 / 42

Toggle sidebar

Related documents


Partial preview of the text

Download RLC Circuits - Engineering Circuit Analysis - Lecture Slides and more Slides Electrical Circuit Analysis in PDF only on Docsity! Engineering 43 2nd Order RLC Circuits Docsity.com Cap & Ind Physics Summary • Under Steady-State (DC) Conditions – Caps act as OPEN Circuits – Inds act as SHORT Circuits • Under Transient (time-varying) Conditions – Cap VOLTAGE can NOT Change Instantly • Resists Changes in Voltage Across it – Ind CURRENT can NOT change Instantly • Resists Changes in Curring Thru it Docsity.com Second Order Circuits  Single Node-Pair Ri L i Ci 0 CLRS iiii )();()( 1 ; )( 0 0 t dt dv Citidxxv L i R tv i CL t t LR   SL t t it dt dv Ctidxxv LR v   )()()( 1 0 0 • By KCL  Rv  Cv   Lv • By KVL 0 LCRS vvvv )();()( 1 ; 0 0 t dt di Lvtvdxxi C vRiv LC t t CR   SC t t vt dt di Ltvdxxi C Ri   )()()( 1 0 0  Single Loop Differentiating dt di L v dt dv Rdt vd C S 1 2 2 dt dv C i dt di R dt id L S 2 2 Docsity.com Second Order Circuits  Single Node-Pair Ri L i Ci • By KCL Obtained  Rv  Cv   Lv • By KVL Obtained  Single Loop dt di L v dt dv Rdt vd C S 1 2 2 dt dv C i dt di R dt id L S 2 2  Make CoEfficient of 2nd Order Term = 1 1∙(2nd Order Term) dt di CLC v dt dv RCdt vd S11 2 2  dt dv L i LCdt di L R dt id S11 2 2  Docsity.com ODE for iL(t) in SNP • Single-Node Ckt • By KCL • Note That • Use Ohm & Cap Laws • Recall v-i Relation for Inductors • Sub Out vL in above Ri L i Ci SCLR iiii     tvtv L S L L L i dt dv Ci R v  dt di Lv LL  S L L L i dt di L dt d Ci dt di L R            1 Docsity.com Illustration • Write The Differential Eqn for v(t) & i(t) Respectively       0 00 )( tI t ti S S dt di L v dt dv Rdt vd C S 1 2 2 0;0)(  tt dt diS       00 0 )( t tV tv S S dt dv C i dt di R dt id L S 2 2 0;0)(  tt dt dvS Si   Sv  The Forcing Function  Parallel RLC Model  In This Case  So 0 1 2 2  L v dt dv Rdt vd C  The Forcing Function  Series RLC Model  In This Case  So 0 2 2  C i dt di R dt id L Docsity.com 2nd Order Response Equation • Need Solutions to the 2nd Order ODE  As Before The Solution Should Take This form  If the Forcing Fcn is a Constant, A, Then Discern a Particular Soln  Verify xp )()()()(1 212 2 tftxat dt dx at dt xd  )()()( txtxtx cp   Where • xp  Particular Solution • xc  Complementary Solution )( 2a A xAtf p  A a A axa dt xd dt dx a A x p pp p   2 22 2 2 2 0  For Any const Forcing Fcn, f(t) = A )()( 2 tx a A tx c  Docsity.com The Complementary Solution • The Complementary Solution Satisfies the HOMOGENOUS Eqn  Nomenclature • α  Damping Coefficient •   Damping Ratio • 0  Undamped (or Resonant) Frequency  Need xc So That the “0th”, 1st & 2nd Derivatives Have the same form so they will CANCEL in the Homogeneous Eqn  Look for Solution of the form  ReWrite in Std form 0)()()( 212 2  txat dt dx at dt xd 0)()(2)( 202 2  txt dt dx t dt xd   Where • a1  2α = 20 • a2  0 2 stKetx )( Docsity.com Complementary Solution cont.3 • Example Cont.  Before Moving On, Verify that Kest is a Solution To The Homogenous Eqn  Then  K=0 is the TRIVIAL Solution • We need More 042 0)(4)(2)( 2 2 2   ss txt dt dx t dt xd UnitLess)(5.0 2 1 1 222 2/2 44 0 0 1 0 2 0 2 0           SS stst Kes dt xd sKe dt dx 2 2 2 ;  0)2( or 0)()(2)( 2 0 2 2 02 2   stKess txt dt dx t dt xd   Docsity.com Complementary Solution cont.4 • If Kest is a Solution Then Need  Solve By Completing the Square • The CHARACTERISTIC Equation  Solve For s by One of • Quadratic Eqn • Completing The Square • Factoring (if we’re REALLY Lucky)  The Solution for s Generates 3 Cases 1. >1 2. <1 3. =1 02 20 2  ss 1 1 0)()( 2 002,1 2 0 2 02,1 2 0 2 22 0 2         s s s s Docsity.com Aside: Completing the Square • Start with: • ReArrange: • Add Zero → 0 = y−y: • ReArrange: • Grouping – The First Group is a PERFECT Square • ReWriting: 02 20 2  ss 02 20 2  ss   02 20222  ss 02 220 22  ss     02 22022  ss     0220 2  s Docsity.com Case 2: <1 → UNDERdamped • Since <1 The Characteristic Eqn Yields COMPLEX Roots as Complex Conjugates – So with j=(-1)  Then The UnderDamped UnForced (Natural) Response Equation  Where • n  Damped natural Oscillation Frequency • α  Damping Coefficient n n jjs jjs     2 002 2 001 1 1    tAtAetx nn t c   sincos 21   Docsity.com UnderDamped Eqn Development • Start w/ Soln to Homogeneous Eqn  From Appendix-A; The Euler Identity  Since K1 & K2 are Arbitrary Constants, Replace with NEW Arbitrary Constants tsts c eKeKtx 21 21)(  tjte nn tj n  sincos   Then       tKKjtKKe tjKtKtjKtKe eeKeeK eKeKtx nn t nnnn t tjttjt tjtj c ndn nn       sincos sincossincos )( 2121 2211 21 )( 2 )( 1          212 211 KKjA KKA    Sub A1 & A2 to Obtain  tAtAetx nn t c   sincos)( 21    Docsity.com UnderDamped IC’s • Find Under Damped Constants A1 & A2 • Given “Zero Order” IC  With xp = D (const) then at t=0 for total solution  Now dx/dt at any t 0)0( Xx   For 1st-Order IC   DXA DAAe Xx nn     01 21 0 0 0sin0cos )0(  10 Xdtdx t           121 21 120 21 12 )0( 0sin 0cos )0( sin cos AAX dt dx AA AA e dt dx tAA tAA e dt dx n nd nn nn nnt                              Arrive at Two Eqns in Two Unknowns • But MUST have a Number for X1 Docsity.com Example: Case Analyses cont. • For Char. Eqn Complete the Square  Then the Solution  The Roots are Complex and Unequal → an Underdamped (Case 2) System • Find the Damped Parameters   31 3)1( 03)1( 31242 2 2 22 js s s ssss     122 0 12 0 1 0 0 0 314 325.0121 122 2122 24         S S S n n         tAtAetx tAtAetx t nn t 3sin3cos)( sincos)( 21 21      Docsity.com UnderDamped Parallel RLC Exmpl • Find Damping Ratio and Undamped Natural Frequency given – R =1 Ω – L = 2 H – C = 2 F • The Homogeneous Eqn from KCL (1-node Pair)  Or, In Std From 0 1 2 2  L v dt dv Rdt vd C 0 21 1 2 2 2  v dt dv dt vd 0 42 1 2 2  v dt dv dt vd  Recognize Parameters 2 1 2 1 2; 2 1 4 1 00   Docsity.com Parallel RLC Example cont • Then: Damping Factor, Damped Frequency 4 3 4 1 1 2 1 1 20  n 4 1 0    Then The Response Equation           tAtAetv t c 4 3 sin 4 3 cos)( 21 4  If: v(0)=10 V, and dv(0)/dt = 0 V/S, Then Find: 31010 21  AA  Plot on Next Slide          ttetv t c 4 3 sin 3 1 4 3 cos10)( 4 Docsity.com KEY to 2nd Order → [dx/dt]t=0+ • Most Confusion in 2nd Order Ckts comes in the from of the First-Derivative IC  If x = iL, Then Find vL  MUST Find at t=0+ vL or iC  Note that THESE Quantities CAN Change Instantaneously • iC (but NOT vC) • vL (but NOT iL)     LvX v dt di L L L t L    0or 0 1 0  If x = vC, Then Find iC 10 Xdtdx t       CiX i dt dv C C C t C    0or 0 1 0 Docsity.com [dx/dt]t=0+ → Find iC(0 +) & vL(0 +) • If this is needed • Then Find a CAP and determine the Current through it • If this is needed • Then Find an IND and determine the Voltage through it 0tdt dv   C i dt dv t    0 0 0tdt di   L v dt di t    0 0 Docsity.com Numerical Example • For The Given 2nd Order Ckt Find for t>0 – io(t), vo(t) • From Ckt Diagram Recognize by Ohm’s Law  KVL at t>0  The Char Eqn & Roots   V24 )(12)(18)( 00 Vtitv  012)(18)(2)0()( 36/1 1 4 0         titdt di vdxxi t C 0)(36)(18)(2 2 2  tit dt di t dt id    6,3 :roots REAL 630 0189 : Eq. Ch. 2    s ss ss 0;)( 62 3 1   teKeKti tto  Taking d(KVL)/dt → ODE  The Solution Model KVL Docsity.com General Ckt Solution Strategy • Apply KCL or KVL depending on Nature of ckt (single: node-pair? loop?) • Convert between VI using • Ohm’s Law • Cap Law • Ind Law    0 0 1 tvdxxi C v dt dv Ci c t t cc c c    Rvi Riv RR RR      0 0 1 tidxxv L i dt di Lv L t t LL L L     Solve Resulting Ckt Analytical-Model using Any & All MATH Methods Docsity.com 2nd Order ODE SuperSUMMARY-1 • Find ANY Particular Solution to the ODE, xp (often a CONSTANT) • Homogenize ODE → set RHS = 0 • Assume xc = Ke st; Sub into ODE • Find Characteristic Eqn for xc  a 2nd order Polynomial dt di L v dt dv Rdt vd C S 1 2 2 dt dv C i dt di R dt id L S 2 2 Differentiating Docsity.com 2nd Order ODE SuperSUMMARY-2 • Find Roots to Char Eqn Using Quadratic Formula (or Sq-Completion) • Examine Nature of Roots to Reveal form of the Eqn for the Complementary Solution: – Real & Unequal Roots → xc = Decaying Constants – Real & Equal Roots → xc = Decaying Line – Complex Roots → xc = Decaying Sinusoid Docsity.com Complete the Square -2 • Now the Left-Hand-Side (LHS) is a PERFECT Square  Solve for x; but first let  Use the Perfect Sq Expression  Finally Find the Roots of the Quadratic Eqn a c a b a b x a cabab x a b x                           22 22 2 22 22 Fab DRHS a cab        2 2 2   DFx a c a b a b x               2 22 or 22   DFxx DFx DFx    21 2 , or Docsity.com Derive Quadratic Eqn -1 • Start with the PERFECT SQUARE Expression  Take the Square Root of Both Sides  Combine Terms inside the Radical over a Common Denom a c a b a b x              22 22 a c a b a b x        2 22 2 2 2 2 2 2 4 4 2 4 4 42 42 a acb a b x aa ac a b a b x a c a b a b x     Docsity.com Derive Quadratic Eqn -2 • Note that Denom is, itself, a PERFECT SQ  Next, Isolate x  But this the Renowned QUADRATIC FORMULA  Note That it was DERIVED by COMPLETING the SQUARE a acb a b x a acb a b x 2 4 2 4 4 2 2 2 2     a acb a b x 2 4 2 2   a acbb x 2 42    Now Combine over Common Denom Docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved