Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

RLC Circuits - Engineering Electrical Circuits - Lecture Slides, Slides of Electrical Circuit Analysis

Some concept of Engineering Electrical Circuits are Active Filters, Useful Electronic, Boolean, Logic Systems, Circuit Simulation, Circuit-Elements, Common-Source, Understand, Dual-Source, Effect Transistors. Main points of this lecture are: Rlc Circuits, Open Circuits, Short Circuits, Under Transient, Voltage, Resists Changes, Change Instantly, Curring Thru, Capacitor, Inductor

Typology: Slides

2012/2013

Uploaded on 04/30/2013

devguru
devguru 🇮🇳

4.3

(12)

68 documents

1 / 51

Toggle sidebar

Related documents


Partial preview of the text

Download RLC Circuits - Engineering Electrical Circuits - Lecture Slides and more Slides Electrical Circuit Analysis in PDF only on Docsity! 2nd Order RLC Circuits Docsity.com Cap & Ind Physics Summary • Under Steady-State (DC) Conditions – Caps act as OPEN Circuits – Inds act as SHORT Circuits • Under Transient (time-varying) Conditions – Cap VOLTAGE can NOT Change Instantly • Resists Changes in Voltage Across it – Ind CURRENT can NOT change Instantly • Resists Changes in Curring Thru it Docsity.com Second Order Circuits  Single Node-Pair Ri Li Ci 0=+++− CLRS iiii )();()(1;)( 0 0 t dt dvCitidxxv L i R tvi CL t t LR =+== ∫ SL t t it dt dvCtidxxv LR v =+++ ∫ )()()( 1 0 0 • By KCL −+ Rv −+ Cv − + Lv • By KVL 0=+++− LCRS vvvv )();()(1; 0 0 t dt diLvtvdxxi C vRiv LC t t CR =+== ∫ SC t t vt dt diLtvdxxi C Ri =+++ ∫ )()()( 1 0 0  Single Loop Differentiating dt di L v dt dv Rdt vdC S=++ 12 2 dt dv C i dt diR dt idL S=++2 2 Docsity.com Second Order Circuits  Single Node-Pair Ri Li Ci • By KCL Obtained −+ Rv −+ Cv − + Lv • By KVL Obtained  Single Loop dt di L v dt dv Rdt vdC S=++ 12 2 dt dv C i dt diR dt idL S=++2 2  Make CoEfficient of 2nd Order Term = 1 1∙(2nd Order Term) dt di CLC v dt dv RCdt vd S11 2 2 =++ dt dv L i LCdt di L R dt id S11 2 2 =++ Docsity.com ODE for iL(t) in SNP • Single-Node Ckt • By KCL • Note That • Use Ohm & Cap Laws • Recall v-i Relation for Inductors • Sub Out vL in above Ri Li Ci SCLR iiii =++ ( ) ( )tvtv L= S L L L i dt dvCi R v =++ dt diLv LL = S L L L i dt diL dt dCi dt diL R =     ++     1 Docsity.com Illustration • Write The Differential Eqn for v(t) & i(t) Respectively    > < = 0 00 )( tI t ti S S dt di L v dt dv Rdt vdC S=++ 12 2 0;0)( >= tt dt diS    > < = 00 0 )( t tV tv SS dt dv C i dt diR dt idL S=++2 2 0;0)( >= tt dt dvS Si − + Sv  The Forcing Function  Parallel RLC Model  In This Case  So 012 2 =++ L v dt dv Rdt vdC  The Forcing Function  Series RLC Model  In This Case  So 02 2 =++ C i dt diR dt idL Docsity.com 2nd Order Response Equation • Need Solutions to the 2nd Order ODE  As Before The Solution Should Take This form  If the Forcing Fcn is a Constant, A, Then Discern a Particular Soln  Verify xp )()()()(1 212 2 tftxat dt dxat dt xd =++⋅ )()()( txtxtx cp +=  Where • xp ≡ Particular Solution • xc ≡ Complementary Solution )( 2a AxAtf p =⇒= A a Aaxa dt xd dt dx a Ax p pp p ==⇒ ==⇒= 2 22 2 2 2 0  For Any const Forcing Fcn, f(t) = A )()( 2 tx a Atx c+=  Docsity.com The Complementary Solution • The Complementary Solution Satisfies the HOMOGENOUS Eqn  Nomenclature • α ≡ Damping Coefficient • ζ ≡ Damping Ratio • ω0 ≡ Undamped (or Resonant) Frequency  Need xc So That the “0th”, 1st & 2nd Derivatives Have the same form so they will CANCEL in the Homogeneous Eqn  Look for Solution of the form  ReWrite in Std form 0)()()( 212 2 =++ txat dt dxat dt xd 0)()(2)( 202 2 =++ txt dt dxt dt xd ωα  Where • a1 ≡ 2α = 2ζω0 • a2 ≡ ω02 stKetx =)( Docsity.com Complementary Solution cont.3 • Example Cont.  Before Moving On, Verify that Kest is a Solution To The Homogenous Eqn  Then  K=0 is the TRIVIAL Solution • We need More 042 0)(4)(2)( 2 2 2 =++ =++ ss txt dt dxt dt xd UnitLess)(5.0 2 1 1222 2/2 44 0 0 1 0 2 0 2 0 ==∴ =⇒== =≡∴ =⇒= − ζ ω ζαζω ω ωω SS stst Kes dt xdsKe dt dx 2 2 2 ; == 0)2( or 0)()(2)( 2 0 2 2 02 2 =++ =++ stKess txt dt dxt dt xd ωα ωα Docsity.com Complementary Solution cont.4 • If Kest is a Solution Then Need  Solve By Completing the Square • The CHARACTERISTIC Equation  Solve For s by One of • Quadratic Eqn • Completing The Square • Factoring (if we’re REALLY Lucky)  The Solution for s Generates 3 Cases 1. ζ>1 2. ζ<1 3. ζ=1 02 20 2 =++ ωαss 1 1 0)()( 2 002,1 2 0 2 02,1 2 0 2 22 0 2 −±−= −±−= ⇒−±−= =−++ ζωζω ωαωα ωαα αωα s s s s Docsity.com Aside: Completing the Square • Start with: • ReArrange: • Add Zero → 0 = y−y: • ReArrange: • Grouping – The First Group is a PERFECT Square • ReWriting: 02 20 2 =++ ωαss 02 20 2 =++ ωαss ( ) 02 20222 =+−++ ωαααss 02 220 22 =−+++ αωααss ( ) ( ) 02 22022 =−+++ αωααss ( ) ( ) 02202 =−++ αωαs Docsity.com Case 2: ζ<1 → UNDERdamped • Since ζ<1 The Characteristic Eqn Yields COMPLEX Roots as Complex Conjugates – So with j=√(-1)  Then The UnderDamped UnForced (Natural) Response Equation  Where • ωn ≡ Damped natural Oscillation Frequency • α ≡ Damping Coefficient n n jjs jjs ωαζωζω ωαζωζω −−=−−−= +−=−+−= 2 002 2 001 1 1 ( ) ( )tAtAetx nntc ωωα sincos 21 += − Docsity.com UnderDamped Eqn Development • Start w/ Soln to Homogeneous Eqn  From Appendix-A; The Euler Identity  Since K1 & K2 are Arbitrary Constants, Replace with NEW Arbitrary Constants tsts c eKeKtx 21 21)( += tjte nn tj n ωωω sincos ±=±  Then ( ) [ ] [ ]( )tKKjtKKe tjKtKtjKtKe eeKeeK eKeKtx nn t nnnn t tjttjt tjtj c ndn nn ωω ωωωω α α ωαωα ωαωα sincos sincossincos )( 2121 2211 21 )( 2 )( 1 −++= −++= += += − − −−− +−+− [ ]212 211 KKjA KKA −= +=  Sub A1 & A2 to Obtain ( )tAtAetx nntc ωωα sincos)( 21 += −  Docsity.com UnderDamped IC’s • Find Under Damped Constants A1 & A2 • Given “Zero Order” IC  With xp = D (const) then at t=0 for total solution  Now dx/dt at any t 0)0( Xx =  For 1st-Order IC ( ) DXA DAAe Xx nn −=∴ ++ == − 01 21 0 0 0sin0cos )0( ωωα 10 Xdtdx t = = ( ) ( ) ( ) ( ) 121 21 120 21 12 )0( 0sin 0cos )0( sin cos AAX dt dx AA AA e dt dx tAA tAA e dt dx n nd nn nn nnt αω ωαω ωαω ωαω ωαω α α −==       +− − =       +− − = − −  Arrive at Two Eqns in Two Unknowns • But MUST have a Number for X1 Docsity.com Example: Case Analyses cont. • For Char. Eqn Complete the Square  Then the Solution  The Roots are Complex and Unequal → an Underdamped (Case 2) System • Find the Damped Parameters ( ) 31 3)1( 03)1( 31242 2 2 22 js s s ssss ±−=⇒ −=+∴ =++= +++=++ 122 0 12 0 1 0 0 0 314 325.0121 122 2122 24 − − − =−=−= =−=−= === =⇒= == S S S n n αωω ζωω ζωα ζζω ω ( ) ( )tAtAetx tAtAetx t nn t 3sin3cos)( sincos)( 21 21 += += − − ωωα Docsity.com UnderDamped Parallel RLC Exmpl • Find Damping Ratio and Undamped Natural Frequency given – R =1 Ω – L = 2 H – C = 2 F • The Homogeneous Eqn from KCL (1-node Pair)  Or, In Std From 012 2 =++ L v dt dv Rdt vdC 0 21 12 2 2 =++ v dt dv dt vd 0 42 1 2 2 =++ v dt dv dt vd  Recognize Parameters 2 1 2 12; 2 1 4 1 00 =⇒=== ζζωω Docsity.com Parallel RLC Example cont • Then: Damping Factor, Damped Frequency 4 3 4 11 2 11 20 =−=−= ζωωn 4 1 0 == ζωα  Then The Response Equation       += − tAtAetv t c 4 3sin 4 3cos)( 214  If: v(0)=10 V, and dv(0)/dt = 0 V/S, Then Find: 31010 21 == AA  Plot on Next Slide       += − ttetv t c 4 3sin 3 1 4 3cos10)( 4 Docsity.com KEY to 2nd Order → [dx/dt]t=0+ • Most Confusion in 2nd Order Ckts comes in the from of the First-Derivative IC  If x = iL, Then Find vL  MUST Find at t=0+ vL or iC  Note that THESE Quantities CAN Change Instantaneously • iC (but NOT vC) • vL (but NOT iL) ( ) ( ) LvX v dt diL L L t L += += += 0or 0 1 0  If x = vC, Then Find iC 10 Xdtdx t = = ( ) ( ) CiX i dt dvC C C t C += += += 0or 0 1 0 Docsity.com [dx/dt]t=0+ → Find iC(0+) & vL(0+) • If this is needed • Then Find a CAP and determine the Current through it • If this is needed • Then Find an IND and determine the Voltage through it +=0tdt dv ( ) C i dt dv t + += = 0 0 +=0tdt di ( ) L v dt di t + += = 0 0 Docsity.com —W§3-lvo nr 60) 2H WhiteBoard > Find v,(t) i,(t) + @ 27r=0 18 G) tf 24V v,(t) 4V 12V Docsity.com _\arnGz7¥3 8 | Engineering Instructor — 2 > os Chabot College = 7HvS Da = Ac ch Ue 25655 Hesperian Blvd g at Hayward, CA 94545 O eMail: bmayer@chabotcollege.édu At =Ao= CLUs D8 l4*4G ABOVE /v KVL EGN LehUe ~/ONCAR + Ue = -8BV ole “ak CorTd K=2e € CHMReE Z MUe 4 /Olx/F AUe + Ver-8V ee at Be At v FROM PBOVE P/scenn pA2TICO AL S6lunl 7 Vie = —8V NOW THE HoMomavecos Gow Gat eageeve Fe LOD 4 FLUE 4 [8UL =O @ werrgeeenne @ 2¢ 7272/4 | Oven 3 4 THE CHAR SGN: 82+ 95778 +0 FACTINNG D> (Bt3)(Ste) =O Docsity.com THEN THe [C9078 : gs = 7-3 ok So-G THEN THE HOMOG SOLV Dee = Ke == tke ante THUS THE TOTAC SOCN = VectUp *—-8V “ Vee Let tee NOU US& ZS 7 FO &, ke UW. COT) = OV te OV= K, e°+Ki. 2° av OR K, +Ky =tAV Ca) NOW (KE 4ce= Cebhvcfat CH Ya SK lt=ot THOS Yel = ACO ap ay BE ot x “Ss = £Cot) =A, (o*) = ZA 4 2ZEFCRZL2 |g? $3 SI Docsity.com So AN = BeYyY- /AaY (ae E> $4 (Ries 8") ks -3ke**-6h eo * Cl Bor kbve /ebt leno => /&@VK Sb oS (6 ~>-BsK, A -Chee OL 2K, +64 =-7@ KOurs Salve fot & # KE. US HQ Gors (1) €@) BK. ¢€Gkr2=-%@ (ep tke = 4+8)-3 7A#-os Ke = -¥Y3 = SEV PREN (2, = BV—K, = BY-CIeV)=#2, SQ Ve=t2vVe 14 VE eV & Numerical Example cont • Steady State for t<0  The Analysis at t = 0+  Then Find The Constants from ICs  Then di0/dt by vL = LdiL/dt  Solving for K1 and K2 Ω Ω )0(Li − + )0(CvV24 0)0( =Cv A VViL 5.0186 1224)0( = Ω+Ω − = )(5.0)0()0( Aii Lo =+=+ )0()0()0( +=+=+ dt diL dt diLv oLL 012)0(18)0(4 =+++++− LL iv ( ) ( )( ) VAvL 175.0181240 −=Ω−−=+  KVL at t=0+ (vc(0+) = 0) HV dt dio 2/17)0( −=+ 21 21 A 5.0)0( 63 S A 2 17)0( KKi KK dt di o o +==+ −−=−=+ A 6 14;A 6 11 21 =−= KK Docsity.com Numerical Example cont.2 • Return to the ODE  Yields Char. Eqn Roots Ω Ω V24 63 21 −=−= ss 0)(18)(9)(2 2 =++ tit dt dit dt id  Write Soln for i0 0; 6 14 6 11)( 63 >+−= −− teeti tto  And Recall io & vo reln )(12)(18)( Vtitv oo += 0;124233)( 63 >++−= −− tVeetv tto 0;)( 62 3 1 >+= −− teKeKti tto ( )( )630 0189 2 ++= =++ ss ss  So Finally Docsity.com General Ckt Solution Strategy • Apply KCL or KVL depending on Nature of ckt (single: node-pair? loop?) • Convert between V↔I using • Ohm’s Law • Cap Law • Ind Law ( ) ( )0 0 1 tvdxxi C v dt dvCi c t t cc c c ∫ += = Rvi Riv RR RR = = ( ) ( )0 0 1 tidxxv L i dt diLv L t t LL L L ∫ += =  Solve Resulting Ckt Analytical-Model using Any & All MATH Methods Docsity.com 2nd Order ODE SuperSUMMARY-3 • Then the TOTAL Solution: x = xc + xp • All TOTAL Solutions for x(t) include 2 UnKnown Constants • Use the Two INITIAL Conditions to generate two Eqns for the 2 unknowns • Solve for the 2 Unknowns to Complete the Solution Process ( ) ( ) pnnt p st p tsts xtAtAex xbmtex xeKeKx ++= ++= ++= − ωωα sincos 21 21 21 Docsity.com All Done for Today 2nd Order IC is Critical! ( )+=    += 0 Case Series 0 L t L v dt diL ( )+=    += 0 Case Parallel 0 C t C i dt dvC Docsity.com Complete the Square -1 • Consider the General 2nd Order Polynomial – a.k.a; the Quadratic Eqn • Where a, b, c are CONSTANTS  Solve This Eqn for x by Completing the Square  First; isolate the Terms involving x  Next, Divide by “a” to give the second order term the coefficient of 1  Now add to both Sides of the eqn a “quadratic supplement” of (b/2a)2 02 =++ cbxax cbxax −=+2 a cx a bx −=+2 a cababx a bx −     =     ++ 22 2 22 Docsity.com Derive Quadratic Eqn -2 • Note that Denom is, itself, a PERFECT SQ  Next, Isolate x  But this the Renowned QUADRATIC FORMULA  Note That it was DERIVED by COMPLETING the SQUARE a acb a bx a acb a bx 2 4 2 4 4 2 2 2 2 − ±=+ − ±=+ a acb a bx 2 4 2 2 − ±−= a acbbx 2 42 −±− =  Now Combine over Common Denom Docsity.com E 9 SOME BY COMALCENYER SOUMZCE Docs 6™=p2. Cus ~ide > og ote 2 S20S =-Wwe- e u y S APP Q@UADRLANC S LPPLCEMENT J Cine TD BOM SIOES 2 5242 Sia,s+Ftoe = Yua*- wet Boe AMS (S$ PERMTEPT SF . _ (st Se.) °= wé[S% 1 Y TPKE SQG-BT OF Bot 31063 Se Foye WN 5*-/ Complete the Squa LSOLATIING § ge Sato sso FEVET | @
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved