Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Robust Stabilization of Nonlinear Systems: Sliding Mode Control, Slides of Nonlinear Control Systems

An overview of robust stabilization techniques for nonlinear systems using sliding mode control. The concept of a sliding manifold, the conditions for reaching and maintaining the manifold, and methods for reducing chattering. It also discusses the analysis of the system and the behavior of trajectories inside the positively invariant set.

Typology: Slides

2011/2012

Uploaded on 07/11/2012

dikshan
dikshan 🇮🇳

4.3

(4)

70 documents

1 / 17

Toggle sidebar

Related documents


Partial preview of the text

Download Robust Stabilization of Nonlinear Systems: Sliding Mode Control and more Slides Nonlinear Control Systems in PDF only on Docsity! Nonlinear Systems and Control Lecture # 32 Robust Stabilization Sliding Mode Control – p. 1/17 Docsity.com Example ẋ1 = x2 ẋ2 = h(x) + g(x)u, g(x) ≥ g0 > 0 Sliding Manifold (Surface): s = a1x1 + x2 = 0 s(t) ≡ 0 ⇒ ẋ1 = −a1x1 a1 > 0 ⇒ lim t→∞ x1(t) = 0 How can we bring the trajectory to the manifold s = 0? How can we maintain it there? – p. 2/17 Docsity.com V̇ ≤ −g0β0 √ 2V dV √ V ≤ −g0β0 √ 2 dt 2 √ V ∣ ∣ ∣ ∣ V (s(t)) V (s(0)) ≤ −g0β0 √ 2 t √ V (s(t)) ≤ √ V (s(0)) − g0β0 1 √ 2 t |s(t)| ≤ |s(0)| − g0β0 t s(t) reaches zero in finite time Once on the surface s = 0, the trajectory cannot leave it – p. 5/17 Docsity.com s=0 What is the region of validity? – p. 6/17 Docsity.com ẋ1 = x2 ẋ2 = h(x) − g(x)β(x)sgn(s) ẋ1 = −a1x1 + s ṡ = a1x2 + h(x) − g(x)β(x)sgn(s) sṡ ≤ −g0β0|s|, if β(x) ≥ ̺(x) + β0 V1 = 1 2x 2 1 V̇1 = x1ẋ1 = −a1x21 + x1s ≤ −a1x21 + |x1|c ≤ 0 ∀ |s| ≤ c and |x1| ≥ c a1 Ω = { |x1| ≤ c a1 , |s| ≤ c } Ω is positively invariant if ∣ ∣ ∣ ∣ a1x2 + h(x) g(x) ∣ ∣ ∣ ∣ ≤ ̺(x) over Ω – p. 7/17 Docsity.com Reduce the amplitude of the signum function ṡ = a1x2 + h(x) + g(x)u u = − [a1x2 + ĥ(x)] ĝ(x) + v ṡ = δ(x) + g(x)v δ(x) = a1 [ 1 − g(x) ĝ(x) ] x2 + h(x) − g(x) ĝ(x) ĥ(x) ∣ ∣ ∣ ∣ δ(x) g(x) ∣ ∣ ∣ ∣ ≤ ̺(x), β(x) ≥ ̺(x) + β0 v = −β(x) sgn(s) – p. 10/17 Docsity.com Replace the signum function by a high-slope saturation function u = −β(x) sat ( s ε ) sat(y) = { y, if |y| ≤ 1 sgn(y), if |y| > 1 - 6 −1 1 y sgn(y) - 6      −1 1 yε sat (y ε ) – p. 11/17 Docsity.com How can we analyze the system? For |s| ≥ ε, u = −β(x) sgn(s) With c ≥ ε Ω = { |x1| ≤ ca1 , |s| ≤ c } is positively invariant The trajectory reaches the boundary layer {|s| ≤ ε}in finite time The boundary layer is positively invariant – p. 12/17 Docsity.com z1 = x1 − x̄1, z2 = s − a1x̄1 x2 = −a1x1 +s = −a1(x1 − x̄1)+s−a1x̄1 = −a1z1 +z2 ż1 = −a1x1 + s = −a1z1 + z2 ż2 = a1x2 + h(x) − g(x)β(x) s ε = a1(z2 − a1z1) + h(x) − g(x)β(x) z2 + a1x̄1 ε ż2 = ℓ(z) − g(x)β(x) z2 ε ℓ(z) = a1(z2 − a1z1) + a1g(x)β(x) [ h(x) a1g(x)β(x) − x̄1 ε ] – p. 15/17 Docsity.com ż1 = −a1z1 + z2, ż2 = ℓ(z) − g(x)β(x) z2 ε ℓ(0) = 0, |ℓ(z)| ≤ ℓ1|z1| + ℓ2|z2| g(x)β(x) ≥ g0β0 V = 1 2 z21 + 1 2 z22 V̇ = z1(−a1z1 + z2) + z2 [ ℓ(z) − g(x)β(x)z2 ε ] V̇ ≤ −a1z21 + (1 + ℓ1)|z1| |z2| + ℓ2z22 − g0β0 ε z22 – p. 16/17 Docsity.com V̇ ≤ −a1z21 + (1 + ℓ1)|z1| |z2| + ℓ2z22 − g0β0 ε z22 V̇ ≤ − [ |z1| |z2| ]T [ a1 −12(1 + ℓ1) −12(1 + ℓ1) ( g0β0 ε − ℓ2 ) ] ︸ ︷︷ ︸ Q [ |z1| |z2| ] det(Q) = a1 ( g0β0 ε − ℓ2 ) − 14(1 + ℓ1) 2 h(0) = 0 ⇒ lim t→∞ x(t) = 0 h(0) 6= 0 ⇒ lim t→∞ x(t) = [ x̄1 0 ] Read Section 14.1.1 – p. 17/17 Docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved