Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Green Chemistry: Three-Step Synthesis of Acetaminophen at St. Catherine University, Lecture notes of Effective CV Writing

Organic SynthesisChemical EngineeringGreen Chemistry

This document details a research project conducted by students Korto Gayflor-Kpanaku, Amanda Padilla, and Alyssa Poquette under the guidance of instructor Alexandra Jones, M.S., at St. Catherine University. The project focused on the three-step synthesis of acetaminophen using green chemistry methods to minimize chemical waste. The first two steps involved the electrophilic aromatic substitution of phenol with nitric acid to create p-nitrophenol and its hydrogenation to p-aminophenol. The third step was the acetylation of p-aminophenol using acetic anhydride. the abstract, experimental procedures, and results.

What you will learn

  • What is the role of the solvent in the three-step synthesis of acetaminophen?
  • What are the advantages of using green chemistry methods in the synthesis of acetaminophen?
  • What are the three steps involved in the synthesis of acetaminophen using green chemistry methods?

Typology: Lecture notes

2021/2022

Uploaded on 07/04/2022

dirk88
dirk88 🇧🇪

4.5

(206)

3.2K documents

1 / 6

Toggle sidebar

Related documents


Partial preview of the text

Download Green Chemistry: Three-Step Synthesis of Acetaminophen at St. Catherine University and more Lecture notes Effective CV Writing in PDF only on Docsity! St. Catherine University SOPHIA Sr. Seraphim Gibbons Undergraduate Symposium 2013 Sr. Seraphim Gibbons Undergraduate Research Symposium May 3rd, 11:00 AM - 11:00 AM Green Chemistry: Three Step Synthesis of Acetaminophen Korto Gayflor-Kpanaku St. Catherine University Amanda Padilla St. Catherine University Alyssa Poquette St. Catherine University Follow this and additional works at: https://sophia.stkate.edu/undergraduate_research_symposium This Event is brought to you for free and open access by the Conferences and Events at SOPHIA. It has been accepted for inclusion in Sr. Seraphim Gibbons Undergraduate Symposium by an authorized administrator of SOPHIA. For more information, please contact amshaw@stkate.edu. Gayflor-Kpanaku, Korto; Padilla, Amanda; and Poquette, Alyssa, "Green Chemistry: Three Step Synthesis of Acetaminophen" (2013). Sr. Seraphim Gibbons Undergraduate Symposium. 26. https://sophia.stkate.edu/undergraduate_research_symposium/2013/Sciences/26 Title and Authors: A Three­Step Synthesis of Acetaminophen Korto Gayflor­Kpanaku Amanda Padilla Alley Poquette Instructor: Alexandra Jones, M.S. Abstract (with new/different green chemistry): Acetaminophen was synthesized from phenol in three steps. In this synthetic route the solvent from step two was kept to help maximize atom economy.  The first step was an electrophilic aromatic substitution on phenol with nitric acid to create p­nitrophenol. Next, p­nitrophenol was used to synthesize p­aminophenol through hydrogenation using an iron catalyst. Lastly, acetaminophen was synthesized by the acylation of the aminophenol. This new method including the green step minimized chemical waste. Scheme: (on chem draw) Introduction: In this investigation, the synthesis of acetaminophen was attempted using a three step experiment. Acetaminophen is a well known drug that is used to relieve headaches, fever, and aches and pains in joints and muscles. It is also a main ingredient in many cold and flu medications and prescriptions. It is considered a safe and effective drug when used in the recommended dosages. The acetaminophen compound counteracts the enzyme cyclooxygenase which synthesizes prostaglandins. Prostaglandins serve many different protective functions within the human body, such as producing pain and raising body temperature. By hindering this synthesis of prostaglandins, the body’s response to elevating temperature and increasing pain can then be reduced. Acetaminophen is different from other pain­controlling drugs, such as aspirin or ibuprofen, because it has no anti­inflammatory properties. It is unlike other non­steroidal anti­inflammatory drugs (NSAIDS) because it seldom irritates the lining of the stomach, and does not affect blood clotting, or the kidneys. Acetaminophen can be synthesized via traditional one or two­step syntheses but three step syntheses are not as common. To begin the synthesis, an electrophilic aromatic substitution on phenol with nitric acid was completed to create p­nitrophenol. P­Nitrophenol was then hydrogenated using an iron catalyst to produce p­aminophenol. Benzene, the solvent in this reaction, is typically discarded, although in this synthesis it was kept as a recyclable solvent, thus maximizing our atom economy. Benzene was separated and characterized by Nuclear Magnetic Resonance (NMR) and Infrared Spectroscopy (IR) to be pure and reusable. P­aminophenol was selectively acetylated using acetic anhydride and the reaction was completed within 10 minutes compared to other protocol using chloroform as the acylated reagent which would have taken 15 hours. IR spectroscopy showed appropriate peaks, matching similar to those on the standard of p­nitrophenol that was pulled up as the best fit from the IR library. A proton NMR was also ran, also showing very distinct and clear peaks matching the structure of the p­nitrophenol. Due to low yields from step one, and a need for large amounts to complete step two, the standard p­nitrophenol was used to in hopes of creating a sufficient amount of product, p­aminophenol. Large amounts of reagents were needed for this step in order to get a sufficient amount of product due to the fact that the iron made stirring difficult because of magnetic interference with the stir bar. After recrystallization the end product resulted in a dark brown liquid. An IR spectroscopy was ran, showing indistinguishable characteristics. Although the desired product was not acquired, the recovery of the majority of the solvent used, benzene was successful. It was noted during distillation that a clear liquid was being collected in the flask, so it was tested using IR and NMR, resulting in a very well fit to pure benzene. The boiling point was also tested and correlated with the standard of benzene, resulting in a range of 79­82 ⁰C, compared to the literature value of 80.1 ⁰C. Being able to recover the majority of benzene allowed for the elimination for a large portion of waste that would have been produced. Unidentifiable product from the second step synthesis resulted in the incompletion of the final synthesis of acetaminophen not to be a viable option. To proceed with the scheme of step three, alterations were made so a desirable product would result using the same techniques and molecular additions. Aniline was substituted for p­aminophenol because of its easy accessibility in lab within timeframe of experiment and because of the structural similarities to p­aminophenol. Upon completion of the selective acylation, acetanilide was created. An IR spectroscopy was ran, resulting in a best fit of acetanilide. The peaks that were found matched closely to the standard that was matched from the IR library. A proton NMR was ran as well, showing peaks that correlated with structure of acetanilide as well. The final synthesis was successful in that acylation occurred. Conclusion: Overall the experiment conducted was unsuccessful in synthesizing acetaminophen. Complications within the individual steps resulted in low percent yields and some unidentifiable products. To proceed with the scheme some alterations were made so that a similar product could be obtained. Time would not allow for the retrial of individual steps or the development of a new synthesis. Based on the similarities in structure to acetaminophen, acetanilide was chosen as a replacement end product to complete the synthesis. In the final step of the synthesis from aniline to acetanilide, the percent yield obtained was the highest of the overall synthesis, at 64 percent. The greenest route in this experiment was the recovery of the solvent, benzene, from the second step synthesis. It was isolated, characterized, and compared to standard values, allowing for the recognition of a pure substance. By recollection of the benzene atom economy was maximized, waste was reduced, and money was saved. Keeping the experiment eco­friendly was a success. Future work: For future work on this three step synthesis of acetaminophen, an alternate route to the second step would be researched and established. The second procedure was time consuming and resulted in a low yield. Although the benzene was recovered from this step, there was still a lot of waste created and more efficient atom economy would be prefered. Acknowledgments: We would also like to give a special thanks for Dr. Jones, Dr. Wollack, and Kayla Lange (TA), for the additional help and guidance throughout the project. References: Hazlet S. DC. 1944. The reduction of aromatic nitro compounds with activated iron. Journal of the American Chemical Society 66(10):1781­1782. Reece J, Urry L, Cain M, Wasserman S, Minorsky P, Jackson R. 2011. Campbell Biology. 9th                              edition. San Francisco Sana S, Tasneem, Ali MM, Rajanna KC, Saiprakash PK. 2009. Efficient and facile method for the nitration of aromatic compounds by nitric acid in micellar media. Synthetic Communications 39(16):2949­53. Yadav V BG. 2004. Reactions on a solid surface, A simple, economical and efficient acylation of alcohols and amines over Al2O3. JOC Note 69:577­580.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved