Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Schrodinger Equation - Quantum Mechanics - Solved Past Exam, Exams of Quantum Mechanics

This is the Solved Past Exam of Quantum Mechanics which includes Initial State of System, Eigenvalue of Matrix, Eigenvalue and Eigenvector, Expectation Value, Energy of System, Conserve Quantity, Odd Function, Result of Integration etc. Key important points are: Schrodinger Equation, Spherical Symmetry, Radial Equation, Boundary Conditions, Differential Equation, Harmonic Oscillator, Hydrogen Atom, Product of Different Functions, Radial Wavefunction

Typology: Exams

2012/2013

Uploaded on 02/20/2013

sadhwani
sadhwani 🇮🇳

4.5

(4)

29 documents

1 / 6

Toggle sidebar

Related documents


Partial preview of the text

Download Schrodinger Equation - Quantum Mechanics - Solved Past Exam and more Exams Quantum Mechanics in PDF only on Docsity! Solutions to PC3130 AY0708 Paper 1(a) Time-independent Schrodinger equation: )()()( 2 2 xExxV m p ψψ =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + By spherical symmetry, we write )()( rVxV = , ),()(),,()( φθφθψψ mlYrRrx == Substitute 2 2 22 r lpp r += into the Schrodinger equation, ),()(),()()( 22 2 22 φθφθ ml m l r YrERYrRrV mr l m p =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ++ Since r rri pr ∂ ∂ = 1 , r rr r rr r rr pr 2 2 222 111 ∂ ∂ −= ∂ ∂ ∂ ∂ −= and ml m l YllYl )1( 22 += , we have )()()( 2 )1( 2 )()(1)(1 2 )1(1 2 ),()(),()()( 2 )1(1 2 2 2 2 22 2 2 2 22 2 2 2 22 rErRrrRrV mr ll rm rERrrR r rV rmr ll rrm YrERYrRrV mr llr rrm m l m l =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + ∂ ∂ − =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + ∂ ∂ − =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ +++ ∂ ∂− φθφθ Let )()( rrRry = , we have 0)())((2)1( )()()( 2 )1( 2 222 2 2 2 2 22 =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −+ + − ∂ ∂ =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + + ∂ ∂ − ryrVEm r ll r rEyryrV mr ll rm We have reduced the Schrodinger equation to 1D radial equation. (shown) 1(b) 0)( 4 1)1( 22 2 =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ +− + − ∂ ∂ ρ ρρρ ynll Consider boundary conditions at 0→ρ and ∞→ρ : When 0→ρ , 0)()1( 22 2 =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + − ∂ ∂ ρ ρρ yll ⇒ 1)( +≈ ly ρρ When ∞→ρ , 0)( 4 1 2 2 =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ − ∂ ∂ ρ ρ y ⇒ 2/)( ρρ −≈ ey Let )(ρV to represent the behaviour of )(ρy between 0 and ∞ , 2/1 )()( ρρρρ −+=∴ eVy l (shown) 2/12/12/ )( 2 1)(')()1()(' ρρρ ρρρρρρρ −+−+− −++= eVeVeVly lll +−+++= −−−− 2/2/2/1 )( 2 1)(')1()()1()(" ρρρ ρρρρρρρ eVeVleVlly lll 2/12/12/ 2/12/12/ )( 4 3)(' 2 1)()1( 2 1 )(' 2 1)(")(')1( ρρρ ρρρ ρρρρρρ ρρρρρρ −+−+− −+−+− +−+− −+++ eVeVeVl eVeVeVl lll lll 2/12/2 )(")(')22()(4 1)1()1()(" ρρ ρρρρρρ ρρ ρ −+− +−++⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + + − + = eVeVlyllly ll Substitute into the given differential equation, we get 0)1(')22(" =−−+−++ VlnVlV ρρ When 1−= nl , we get 0')2(" =−+ VnV ρρ Clearly, =)(ρV constant is a solution, we thus have 2/1const)( ρρρ −+⋅= ey l , 0 2 2 na rr == κρ 1(c) ∫∫= ππ ψφθθ 2 0 2 0 2 )(sin)( xddrrP nlmn ∫∫ −−⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = π ρπ φθρφθθ 2 0 222 3 0 0 2 ),( )!2( 12sin ml n Ye nna ddr Since 0 2 na r =ρ , ρ π ρ ρρθθ −− =⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = ∫ ennaennadrP nn n 2 0 0 2 0 )!2( 14 )!2( 12sin)( )2( )!2( 14 212 0 ρρ ρρ −−− −= een nnadr dP nnn When 0= dr dPn , n na rn 222 0 =⇒=ρ 0 2anr =∴ (shown) 2(a) Hamiltonian of 3D harmonic oscillator: (Refer to lecture notes for more details) 22 2 2 3 2 2 2 1 2 2 3 2 2 2 1 2 1 2 )( 2 1 222 rm m pxxxm m p m p m pH ωω +=+++++= The time-independent Schrodinger equation for 3D harmonic oscillator is: ),,(),,( 2 1 2 22 2 φθψφθψω rErrm m p =⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + We can transform the above equation into 1D radial equation, just as the case for hydrogen atom. By considering the boundary conditions, we can obtain the radial wavefunction as a product of different functions. /1)( 2/2 2 w Ji w JieR w εε ε +==− Since )( 2ε−= wRR , [ ] /1,1 22 2 wvu JiJJ ε ε +=+ [ ] wvu JiJJ =, (shown) 4(a) Consider the Hamiltonian of a pair of particle and its anti-particle, e.g. electron and positron. This Hamiltonian commutes with the permutation operator, but the states need not be symmetrized or antisymmetrized. 4(b)(i) Identical bosons: Ground state: )sin()sin(2),( 212111 b x b x b xx ππψ = Energy of ground state, ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = 2 22 11 2 2 mb E π 1st excited state: ⎥⎦ ⎤ ⎢⎣ ⎡ += )sin()2sin()2sin()sin(2),( 21212112 b x b x b x b x b xx ππππψ Energy of 1st excited state, ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = 2 22 12 2 5 mb E π 2nd excited state: )2sin()2sin(2),( 212122 b x b x b xx ππψ = Energy of 2nd excited state, ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = 2 22 22 2 8 mb E π 4(b)(ii) Identical fermions: Ground state: ⎥⎦ ⎤ ⎢⎣ ⎡ −= )sin()2sin()2sin()sin(2),( 21212112 b x b x b x b x b xx ππππψ Energy of ground state, ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = 2 22 12 2 5 mb E π 1st excited state: ⎥⎦ ⎤ ⎢⎣ ⎡ −= )sin()3sin()3sin()sin(2),( 21212113 b x b x b x b x b xx ππππψ Energy of 1st excited state, ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = 2 22 13 2 10 mb E π 2nd excited state: ⎥⎦ ⎤ ⎢⎣ ⎡ −= )2sin()3sin()3sin()2sin(2),( 21212123 b x b x b x b x b xx ππππψ Energy of 2nd excited state, ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ = 2 22 23 2 13 mb E π Ground state wavefunction of 3 identical fermions: ⎢ ⎣ ⎡ +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛+⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛= b x b x b x b x b x b x b 321321 3123 sin 3sin2sin3sin2sinsin 3 2 ππππππψ ⎥ ⎦ ⎤ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛−⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛−⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ b x b x b x b x b x b x b x b x b x b x b x b x 321321 321321 sin2sin3sin3sinsin2sin 2sin3sinsin2sinsin3sin ππππππ ππππππ 4(c) 0,00,0 )2()1()2()1( baba SSSS = 2 1, 2 1 2 1, 2 1 2 1 2 1, 2 1 2 1, 2 1 2 1 2 1, 2 1 2 1, 2 1 2 1, 2 1 2 1, 2 1 2 1 )2()1()2()1( )2()1( −−+−−= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −−−⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −−−= baba ba SSSS SS Taking )1(3 )1( SSa = , let b̂ be the vector on 31xx plane, θθ sincos )2( 1 )2( 3 )2( SSSb += 2 1, 2 1)sincos( 2 1, 2 1 2 1 2 1, 2 1)sincos( 2 1, 2 1 2 1 )2( 1 )2( 3 )1( 3 )2( 1 )2( 3 )1( 3 )2()1( −+−+ −+−= θθ θθ SSS SSSSS ba θ θθθθ cos 4 2 1, 2 1 2 1, 2 1sin 4 cos 42 1, 2 1)sincos( 2 1, 2 1 2 22 )2( 1 )2( 3 )1( 3 −= −+−=−+− SSS θ θθθθ cos 4 2 1, 2 1 2 1, 2 1sin 4 cos 42 1, 2 1)sincos( 2 1, 2 1 2 22 )2( 1 )2( 3 )1( 3 −= −−−−=−+− SSS θθθ cos 4 cos 42 1cos 42 1 222)2()1( −=⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −+⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −=ba SS (shown)
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved