Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Sinosoidal Steady State Power Calculations-Electric Circuits 8th Edition Nilsson-Electrical Circuital Analysis-Solution Manual, Exercises of Electronic Circuits Analysis

This is solution manual required for Electrical Circuital Analysis course at Maulana Azad National Institute of Technology. It includes: Sinusoidal, Steady, State, Power, Calculations, Delivering, Absorbing, Magnetizing, Series, Derivation

Typology: Exercises

2011/2012

Uploaded on 07/06/2012

nauman
nauman 🇵🇰

4.3

(13)

22 documents

1 / 58

Toggle sidebar

Related documents


Partial preview of the text

Download Sinosoidal Steady State Power Calculations-Electric Circuits 8th Edition Nilsson-Electrical Circuital Analysis-Solution Manual and more Exercises Electronic Circuits Analysis in PDF only on Docsity! —10 Sinusoidal Steady State Power Calculations Assessment Problems AP 10.1 [a] V = 100/—45°V, T= 20/15°A Therefore P= 5 (100)(20) eos|—45 —(15))=500W, AB Q = 1000 sin —60° = —866.03 VAR, BoA [b] V = 100/— 45°, I= 20/165° P = 1000cos(—210°) = —-866.03W, BoA Q = 1000sin(—210°) = 500 VAR, A—>B [e] V=100/—45°, 1 = 20/— 105° P = 1000cos(60°) =500W, A—B Q = 1000sin(60°) = 866.03 VAR, A—>B [d]} V=100/0°, 1=20/120° P = 1000cos(—120°)=—500W, BoA Q = 1000sin(—120°) = —866.03 VAR, BoA AP 10.2 pf = cos(, — 6;) = cos[15 — (75)] = cos(—60°) = 0.5 leading rf =sin(0, — 6;) = sin(—60°) = —0.866 8 10-1 docsity.com 10-2 CHAPTER 10. Sinusoidal Steady State Power Calculations AP 10.3 iy. 018 From Ex. 9.4 Jeg = Wao a4 P=2,R= ca) (5000) = 54 Ww AP 10.4 [a] Z = (39 + 726)||(—j52) = 48 — j20 = 52/— 22.62°2 250/0° fi = 22 _ a gg age Therefore I, B—720+1494 4.85/18.08° A (rms) Vi, = Zz = (52/ = 22.62°) (4.85/18.08°) = 252.20/— 4.54° V(rms) ns Raine. L= 394 726 > 5.38/— 38.23° A(rms) [b]_ Sy = Vit, = (252.20/— 4.54°)(5.38/-+ 38.23°) = 1357/33.69° = (1129.09 + 9752.73) VA P, = 1129.09 W; Qt = 752.73 VAR. {c] Pe = |Ic|?1 = (4.85)?-1=23.52W; Qe = [I-24 = 94.09 VAR [d] S,(delivering) = 2501; = (1152.62 — 7376.36) VA Therefore the source is delivering 1152.62 W and absorbing 376.36 magnetizing VAR. _ [MiP _ (252.20)? le] Qeap = 5 = “Ey = — 1223.18 VAR Therefore the capacitor is delivering 1223.18 magnetizing VAR. Check: 94.09 + 752.73 + 376.36 = 1223.18 VAR and 1129.09 + 23.52 = 1152.62 W AP 10.5 Series circuit derivation: = 2501" = (40,000 — 730,000) Therefore I* = 160 — j120 = 200/— 36.87° A(rms) I = 200/36.87° A(rms) Vv 250 z . =— = —_—__ =]. — 36.87° = (1 — 70. Qa 2= 7 = appear = 1 25L= 36.87 = (1 — j0.75) Therefore R=1Q, Xo = -0.750 3 docsity.com Problems 10-5 (b] LL. -l, =0.4—70.32A P75 = lh — I,|?(375) = 49.20 W [ce] P, = 5 (248)(08) = 99.20W > Pats = 50+ 49.2 = 99.20W (checks) AP 10.10 [a] Vin = 210V; V2 = $V; I=1h Short circuit equations: 840 = 801, — 20In + Vi 0 = 200, — ly) — Ve 210 \ b=MA; Rn = 5 = 150 [b] Pax = (0)"15 = 735 = (2) 5= AP 10.11 [a] Vrn = —4(146/0°) = -584/0° V(rms) V2 =4Vi; I, = 4h Short circuit equations: 146/0° = 801, — 2012 + Vi 0 = 20(p —)) — Ve . Ip =-146/365=-0.40A; Rm = = = 14602 a 2 [b] P= (Sm) 1460 = 58.40 W 3 docsity.com 10-6 CHAPTER 10. Sinusoidal Steady State Power Calculations Problems P10.1 p=P+ Pcos2ut— Qsin Qt; op = —2wP sin 2wt — 2wQ cos Qwt dt #9 when — 2wPsin2wt = 2wQcos2wt or tan 2ut = —2 P 2 2 -2 P+Q P . Q 2ut = —————; in Qwt = ———=— ONS TPE SNS pe Let @ = tan-!(—Q/P), then p is maximum when 2ut = 0 and p is minimum when 2ut = (+7). . P Q(-Q) / 21 = <——————_—_—_—_— —- —— P 2. 2. Therefore Pmax = P +P PTO VPPTOE + (P?+Q P and Pmin =P ~ P- ppg ~Q: pty = P— (P+ P102 [a] P= 5 (340)(20) cos(60 — 15) = 3400cos 45° = 2404.16 W (abs) Q = 3400sin 45° = 2404.16 VAR (abs) [b] P= 5(16)(75) cos(—15 — 60) = 600 cos(~75°) = 155.29W (abs) Q = 600sin(—75°) = —579.56 VAR (del) [c] P= 5 (625)(4) cos(40 — 150) = 1250 cos(—110°) = —427.53W (del) Q = 1250sin(—110°) = —1174.62 VAR (del) [d] P= 5 (180)(10) cos(130 — 20) = 900cos(110°) = —307.82W (del) Q = 900sin(110°) = 845.72 VAR. (abs) 3 docsity.com Problems 10-7 P 10.3 [a] coffee maker = 1200W radio = 71 W television = 145 W portable heater = 1322 W XP = 2738 W 2738 Therefore Ing = 70 = 22.82 A Yes, the breaker will trip. [b] 5° P = 2738 — 1200 = 1538 W; Loe = = =12.82A ‘Yes, the breaker will not trip if the current is reduced to 12.82 A. P104 I, =30/0°mA; 1 ne tof =-j10 “= * jwE ~ 725 x 105)(40) jwL = j(25 x 10%)(40) x 10-6 = 710 22 52 AW AW 30/0°m + -310 f 4310 Z, = —jil|(5+ 91) =0.2- 712 Zeq = 2+ Z, =2.2- 712 2 . ) Py = |Inms|?Re{ Zeq} = (3 x 10) (2.2) = 990 nW P 10.5 + __ 1 _ _os090 “ wO ~ (5000)(80) — __ —32500(7500) = = 750 — j22500 «= F500 — 7500 ~ (0 ~ 92250 Z, = 15000 Z 750 — 52250 | SS = ——__ = 0.5—- 91.5 Z 1500 OS Vo= #y,, V, =4/0°V qj 3 docsity.com 10-10 CHAPTER 10. Sinusoidal Steady State Power Calculations P 10.8 P 10.9 _1(90) _ fl P= 97350 ~ 3 _ 1 (0)? Q= 2 (1012.5) AVAR Prax = P + \/P?+Q? =3+ \/(3)? + (4? = 8 W(del) [b] Pmin = 3 — 5 = —2 W(abs) [ec] P=4W_ from (a) [d] Q=4VAR_ from (a) {e] absorb, because Q > 0 [f] pf = cos(6, — 6;) poy 1350 71012.5 *. p£ =cos(0+ 53.13°) = 0.6 lagging = 0.0667 — 0.08889 = 111.11/—53.13° mA [g] rf = sin(53.13°) = 0.8 [a] From the solution to Problem 9.56 we have: T, Tbe x 2¢£450 z 1 F-j102 A2.s%, vzsQ (H15/0°a V_ = 72 + 596 = 120/53.13° V Sy = -5V, = —5 (72 + §96)(15) = —540 — j720VA Therefore, the independent current source is delivering 540 W and 720 magnetizing vars. I= ¥ = 15/53.13° A Pao = 5(15)°(8) = 900 W Therefore, the 8 resistor is absorbing 900 W. In = ~ = -9.6 + 97.2 = 12/143.13° A docsity.com Problems 10-11 D Qea= 3 (12)"(-10) = —720VAR Therefore, the —j10Q. capacitor is delivering 720 magnetizing vars. 2.51, = —24+4 j18V Vo-2-5In _ 72+ 596 + 24 — j18 I= 7D i = 15.6 — 719.2 A = 24.72/—50.91° A 1 Qi5 = g/L?) = 1530 VAR Therefore, the j5Q inductor is absorbing 1530 magnetizing vars. Sost, = = $(2.51,) 5 = 3(—24 + j18)(15.6 + 719.2) = —360 — j90 VA Thus the dependent source is delivering 360 W and 90 magnetizing vars. [b] }> Peen = 360 + 540 = 900 W = de Pav [c] 5° Qgen = 720 + 90 + 720 = 1530 VAR = S Qabs P 10.10 [a] From the solution to Problem 9.57 we have 20Q -j20Q AWN 60/0°vG » 45a j90V t, t, I, = 2.25 — 2.25A; I, = —-6.75+j0.75A; I,=9-—Jj3A Seov = — 5(60)K: = —30(2.25 + 72.25) = 67.5 — j67.5VA Thus, the 60 V source is developing 67.5 W and 67.5 magnetizing vars. Soov = —3(j90)If, = —j45(—6.75 — 50.75) = —33.75 + 7303.75 VA Thus, the 90 V source is delivering 33.75 W and absorbing 303.75 magnetizing vars. 1 Pog = gltl?(20) = 101.25 W docsity.com 10-12 CHAPTER 10. Sinusoidal Steady State Power Calculations Thus the 20 resistor is absorbing 101.25 W. Q_j200 = 5lisi°(-20) = —461.25 VAR, Thus the —j20 capacitor is developing 461.25 magnetizing vars. Qisa = lel) = 225 VAR Thus the j5Q inductor is absorbing 225 magnetizing vars. [b] > Paev = 67.5 + 33.75 = 101.25 W = D> Pars fe] 3° Qeev = 67.5 + 461.25 = 528.75 VAR DY Qube = 225 + 303.75 = 528.75 VAR = > Qaev v2 totT 4/2 10.11 Wa, = £T; = = dt E Ws RR” We t. Rk v2. totT 2 Mdep = [ vs at R te R 1 tot+T Ve= Th, wv? dt 1 stetT Vac = \[ = U2 dt = Vis = Vag T Sty P 10.12 [a] Tor = 60/110 ¥0.545A; — [b] Jur = (60 + 80)/110 & 1.273. A P 10.13 [a] Area under one cycle of v2: A = (400)(4)(20 x 10-*) + 10,000(2)(20 x 10-5) = 21,600(20 x 10-*) Mean value of v3: A_____ 21,600(20 x 10-5) MV. = 359x103 = — 190 x 10-8 = 3600 “. Vims = V3600 = 60 V(rms) 2 {b] P= Yen — 560 _ sow docsity.com Problems 10-15 [ Is =—2- = 5(82-+24)(1 — jl) =2.8- jO.4A Qis0 = sits?) = 20 VAR(abs) 0-08 = 5ltal*(—10) = —80 VAR(dev) Y Qavs = 20 + 60 = 80 VAR = S> Qaev P1018 (al 502 800 WA 2 ANA 5 _ 340/0@) -31000 J " f 4609 V(rems) aL ° I, _ ~*~ Vo V. — 340 Vo + —ji00 + 50 + 80+ 5007 ° Vo = 238 — j34V 340 — 238 + 734 l= ee = 2.04+ j0.68A Sy = Vol, = (340)(2.04 — 70.68) = 693.6 — j231.2VA [b] Source is delivering 693.6 W. [c] Source is absorbing 231.2 magnetizing VAR. [d] 1, = = 0.344 j2.38A Vo =7100 Sy = Voli = (238 — 734) (0.34 — 52.38) =0-j578VA Vo _ 238 — j34 I =1L7-fl. 2= 304760 80+ 760 ~17~I17A Sp = Vol} = (238 — j34)(1.7 + j1.7) = 462.4 + j346.8VA Sson = |1y|?(50) + 70 = (2.15)?(50) = 231.2 W 3 docsity.com 10-16 CHAPTER 10. Sinusoidal Steady State Power Calculations fe] > Pia = 693.6 W DY Paiss = 462.4 + 231.2 = 693.6 W 3 Pia Y Paiss = 693.6 W [f] 37 Qaus = 231.2 + 346.8 = 578 VAR YD Qaev = 578 VAR “. 5 mag VAR dev = > mag VAR abs = 578 P 10.19 [a] Let Vz = Vp,/0°: 1 48Q 240/e° " i V (rms) v,,L0 5, St = 250(0.6 + 70.8) = 150 + j200VA = 10, 200, 5 _ 150 200 =, Vat “Wa, Ve 240/0 = Vin + (= - i”) (1 +38) 240Vin/0 = V2 + (150 — j200)(1 + 78) = V2 +1750 + 71000 240Vn cos = V2+1750; 240Vn sin = 1000 (240)?V2 = (V2 + 1750)? + 1000? 57,600V;2 = V,4 + 3500V2 + (3.0625 + 1) x 10° t or VA — 54,100V,2 + 4,062,500 = 0 Solving, V2 = 27,050 + 26,974.8; Vin = 232.43 V and V,, = 8.67 V Tf Vin = 232.43 V: 1000 in Qe 0170: “. 0 =1.03° sind (232.43) (240) 0.0179; 1.03 If Vin = 8.67 V: 1000 si = ——__——_ = 0. * 2. 0 = 28.72° sin 8 (8.67)(240) 0.4805; 8.72' docsity.com Problems [b] ° 240/1.03°v 232.43/0°v ° T,~ 1.08/-53.13 A 240/28.72 Vv 8.67/0 Vv 28.84/-53.13°V .52,800 P 10.20 Sp = 52,800 — 08 (0.6) = 52,800 — 739,600 VA Si = 40,000(0.96 + 70.28) = 38,400 + 711,200 VA So = Sp — S, = 14,400 — 750,800 = 52,801.52/— 74.17? VA rf = sin(—74.17°) = —0.9621 pf = cos(—74.17°) = 0.2727 leading P 10.21 [a] Z = 12+ j(2m)(60)(15 x 107%) = 13.27/25.23° pf = cos(25.23°) = 0.9 lagging rf = sin(25.23°) = 0.43 =s0-—__/ — 64,24° 2a = 80 — sencia xis 7 184-08/ = 64.04".0 pf = cos(—64.24°) = 0.43 leading rf = sin(—64.24°) = —0.9 23 = 400+ Z, Z= jwL(1/jwC) _ jwk ? jwL+1/jw0 1—wLC 10-17 docsity.com 10-20. CHAPTER 10. Sinusoidal Steady State Power Calculations [c] Vi lags V, by 2.21° or 102.31 ps Vv g 2.21° L P 10.26 [a] 9,05 I, 45 pso/o ay (rms) 500052000. L= 5 40 — j16 A (rms) 1,2 =i = = 30-12 (rms) [y= S020 _ 59-4 50:8 (eins) 250 *. Ig, = 72 — 316A (rms) T, =l, —In = 10-74 A (rms) Tyo = 62 — j12A Voi = 0.051g: + 125 + j0 + 0.141, = 130 — 71.36 V(rms) Vo2 = —0.141, + 125 + j0 + 0.05142 = 126.7 — 70.04 V(rms) Soi = [(130 — 71.36)(72 + 716)] = [9381.76 + 71982.08] VA Sy2 = [(126.7 — j0.04) (62 + j12)] = [7855.88 + 1517.92] VA Note: Both sources are delivering average power and magnetizing VAR to the circuit. {b] Po.os = |Ip1|?(0.05) = 272 W Pos = |In|?(0.14) = 16.24 W Po.os = |Ig2|?(0.05) = 199.4 W >? Pais = 272 + 16.24 + 199.4 + 5000 + 3750 + 8000 = 17,237.64 W 3 docsity.com P 10.27 [al Problems > Piey = 9381.76 + 7855.88 = 17,237.64 W = > Pais YX Qaus = 2000 + 1500 = 3500 VAR DY Qaer = 1982.08 + 1517.92 = 3500 VAR = 7 Qats , 120/0°Q) Ly V(rms) I, 2120 f 480 120/0°C L, Vv (rms) I, 1201; = 1800+ j600; 9. Ty = 15 — 75 A(rms) 12015 = 1200-7900; *. Ip = 10 +. 7.5 A(rms) 240 240 = 47 =20-j 3 = F5 + 548 0 — j5 A(rms) In =, +15 =35—j10A Sor = 120(35 + j10) = 4200 + 71200 VA 10-21 Thus the V,i source is delivering 4200 W and 1200 magnetizing vars. Igo = In + Iz = 30 + 72.5 A(rms) S2 = 120(30 — 2.5) = 3600 — 7300 VA Thus the V4 source is delivering 3600 W and absorbing 300 magnetizing vars. [b] 37 Pren = 4200 + 3600 = 7800 W 2. SS Pabs = 1800 + 1200 + oer = 7800 W = > Peen Y Qua = 1200 + 900 = 2100 VAR 240)? YZ Qube = 300 + 600 + oer = 2100 VAR = 3° Qaa docsity.com 10-22 CHAPTER 10. Sinusoidal Steady State Power Calculations P 10.28 P 10.29 S1 = 1200 + 1196 + 516 + j0 = 2912+ jOVA . 2912, , 5 T= sop +90 = 24.274 j0A So = 600 + 279 + 88 + 512 + j0 = 1479+ jOVA 1479 = +70=12. j I, 120 +j0 33+ j0A Sg = 4474 + 12,200 + j0 = 16,674 + j0VA 16,674 . Ts = Jyp +10 = 69.484 JOA In. =) + Ig = 93.75 + j0A Tyo = 1p + Ig = 81.814 j0A Breakers will not trip since both feeder currents are less than 100 A. 1Q 48Q as > I, + ae , 2s00/o°v | 250kva 0.96 lag -i%, ess 240,000 — 770,000 _ L= 2500 = 96 — 728 A(rms) 2500 _ 2500 _ =9X sw Ke = JAG c= Ty = 96 — 928 + jIc = 96 + j(Ic — 28) V., = 2500 + (1 + 78)[96 + j(Ic — 28)] = (2820 — 81c) + §(740 + Ic) |V.|? = (2820 — 8c)? + (740 + Ic)? = (2500)? *. 6514 — 43,640[¢ + 2,250,000 = 0 docsity.com Problems [b] V..(before) = 4800 + (375 — 7500)(0.02 + 70.16) = 4887.5 + j50 = 4887.5/0.59° V(rms) |V.(before)| = 4887.76 V(rms) V, (after) = 4800 + (500 — 7145.83)(0.02 + j0.16) = 4833.33 + 77.08 = 4833.95/0.91° V(rms) |V.,(after)| = 4833.95 V(rms) 125/0° 125 P 10. Uy re Oe ah 032 al ti 20+ 734+5+ 716 254750 1724 jwM j50 Ls 241) = 2" _1 4 2 = Fe = 3004 j150 "1 7) = 0.44 — 70.08 = 0.45/— 10.30° A Vi = (150 — 7100)(0.44 — 0.08) = 58 — j56 = 80.62/— 43.99° V |Vi| = 80.62 V [b] P,(ideal) = 125(1) = 125 W P, (practical) = 125 — |I,|?(5) = 125 — 25 = 100 W P, = [IL |?(150) = 30 W 0 100 P 10.35 [al 19 % delivered = (100) = 30% V (rms) 7 3 20 = J2(I — Ip) + jl (la — Is) — f1( — Is) 0 = 1p + jl (Ip — Is) + 910 — Tn) + 2(Ip — Lh) — f(a — I) 10-25 docsity.com 10-26 [b] CHAPTER 10. Sinusoidal Steady State Power Calculations 0=—J1(Iz —1,) + j1(I3 — Lb) — 1, -— I,) + 1 Solving, T, = 20—j20A(rms); I, = 20+ j0A(rms);_ I; = 0 A(rms) I, =], = 20— 720A i, =, -l=—j20A I, =I, =20A ly =I3 —Ip = -20A I, =I, —I3 = 20— 720A T;=1;=0A + ve = 19 7 et¥, - ih ¢ Ye-¢ 320 j19Q x, J + J Ny : afc vy-j19 ey, Vins) €, - <, Tt, - V. = 204 j0V Vy = j2ly — fla = 40 + j20V V. = II, = 20+ j0V Va = jlla — jl, = —20 — j20V V. = fll, = —20-j20V Vp = 1; =0V S, = —201% = —400 — j400 VA Sp = Vile = —400 + 7800 VA So = VeIt = 400 + j0VA Sa = Vali = 400 + 7400 VA Se = Vel = 0 — j800VA Sp = Vet =0+4j0VA [ce] > Paey = 400 W YS Pavs = —400 + 400 + 400 = 400 W Note that the total power absorbed by the coupled coils is zero: —400 + 400 =0=FA,+ Py docsity.com Problems 10-27 [d] > Qeev = 400 + 800 = 1200 VAR Both the source and the capacitor are developing magnetizing vars. YS Qavs = 400 + 800 = 1200 VAR > Q absorbed by the coupled coils is Q, + Qa P 10.36 i 4300 102 ~=—- 450 4209 Wi SY. SON. e e e 340/0° ¢ j100nt 4409 #400 V (rms) x) 4700 L, 340/0° = 101, + 7501, + j70(Iy — In) — 73015 +3701, — j40I2 + j100(I, — Ip) 0 = j100(Iz — I,) — j701, + 7401 + 52015 +j40(Ip — I) — 7301, + 40Iy Solving, I, = 5 — j1 A(rms); T, = 6/0° A(rms) Pron = (6)?(40) = 1440 W [b] P, (developed) = (340)(5) = 1700 W 4. [e] Zn = x -10= a — 10 = 55.38 + 713.08 = 56.91/13.28° Q : = [d] Pro = [Z_|?(10) = 260 W DY Pais = 1440 + 260 = 1700 W = S> Piey 3kQ P 10.37 [al v 30/0" @) -L Vv (rms) tr 1k 30 = 30001, + Vi + 1000(I; — Ip) 3 docsity.com 10-30 CHAPTER 10. Sinusoidal Steady State Power Calculations 90/0°(60) . Von = = = 45(1 — fl) = 45V2/— 45° [b] Vin 60+ 760 45(1 — j1) = 45V2/— 45°V 30kQ -j10kQ 30kQ WA 1}-———"v- — I 45fa5c V(rems) ‘Y j10kQ e 45y/2/— 45° - = So = 0: [{— 45° Tm So tor = 0-75V2/—45°mA [ms] = 0.75 mA Prada = (0.75)? x 10-°(30 x 10%) = 16.875mW 240 — j80— 480 | 240-780 _ P 10.42 [a] tae _ —100(240 + 780) . Zen = 240 — 780) = 80+ 602 Zi, = 80 — 7602 480/0° = — = CAT 3 [bh] I=755 oe 3/0° A(rms) P = (9)(80) = 720W 50 -j109 vy. 109 P 10.43 [al] 2S ek ae * 250 fo 0.2v, v, £150 Vom v (rms) ae _ —e Vi — 250 Vi Men OV, ==0 s=yi0 +0495 _ —J5Vi _ “Vi 710495 2471 _ §0.2V1 —0.2V, = 255r 1, 902, 1 7) _ 250 "15-710 2+71 ' 10+ 95] 5-710 3 docsity.com Problems 10-31 Thus, V, = 10(10 + 5) V1 = 750 = 50/90° V(rms) pd Vn, = Tm 10+ 95 Short circuit current: 52 -j100 109 Wie e+ a | —— H 8 Wa 250 /0C 450 V(rms) | 4 250/02 _ 50 A(rms) Ie = 15 — 710 ~ 3= 72 = Ig ih eds e m= 7 = 5g 2n 330 22 5 + i 50 /90@) vy, +430 V(rms) 50/90° L= a = 12.5/90° A(rms) P = (12.5)?(2) = 312.50W [b] Vi = (2 — j3)(j12.5) = 37.5 + 525 V(rms) 52 -j100 100 20 WA als AM L Wie —I ° + = ee ‘ 250 /0 C) 0.2y v. Ye '50v, 4-330 Vi(rms) + I eu Vi _ 37.5 + 925 . a SE TBA 75 75 j7.5 A(rms) Ih =1 +I =5— 97.5 + 712.5 =5 + 75 A(rms) 3 docsity.com iL 10-32 P 10.44 [al CHAPTER 10. Sinusoidal Steady State Power Calculations Ves = Vi + 10Iy = 37.5 + 25 + 50 + j50 = 87.5 + 775 V(rms) Vo = -Vi, = —37.5 — 525 0.2V, = —-7.5 — 35 Ses = —Vealt, = —(87.5 + §75)(—7.5 + 75) = 1031.25 + j125VA Therefore, the dependent source is absorbing 1031.25 W and 125 magnetizing vars. Only the independent voltage source is developing power. I, = —0.2V, +1, =7.5+j5+5+ 95 =1254+ 510A Sq = —2501, = —3125 + 72500 VA Paey = 3125 W F 312.5 % delivered = 3195 ape (100) = 10% Thus, 10% of the developed power is delivered to the load. Checks: Pron = (5V2)?10 = 500 W Poo = 312.5W Psq = (V256.25)°5 = 1281.25 W DY Piev = > Paws = 500 + 312.5 + 1281.25 + 1031.25 = 3125 W VAR Check: The 250 V source is absorbing 2500 vars; the dependent current source is absorbing 125 vars; the j5Q inductor is absorbing [37.5 + j25|?/5 = 406.25 vars. Thus, YS Qabs = 2625 + 406.25 = 3031.25 VAR DX Qaev = (12.5)?(3) + 256.25(10) = 3031.25 VAR = 37 Qavs 100 340n 360 /o" 3402 2700 We ae sa0H a) Fa rms) i, 360/0° = 101, + 3401, + j30(I2 — 11) — 7301, + 740(1, — I.) docsity.com Problems 10-35 [b] Poss = [11 |?(15) + |Ie[?(30) = 780 + 187.5 = 967.5 W 967.50 ea 1530 P 10.47 [a] Zm=8+j15+ ~~ (100) = (=724)(18 + 6) 18 —j18 63.24% = 24+ 97 = 25/16.26°Q = Yeni = = 252 b =i [b] Ven = 18+ — 420, PB 4 V(rms) _ 4202/0? ~ 49457’ pe (2000) P 10.48 [al B50)@) 05) 94 (630/0°) = 420 — 5420 = 420V/2/— 45° V(rms) 24Q jJ7Q i 25Q in) = 00V2 ~ 50 3600 W = 3.6kW -O5Y, o 600/0 -j20Q fe $ 5100 Yon Vs~600 | Vs 10” ji0 —0.05Vy =0 *. Vy = 240 + 7480 V(rms) Von = V5 + 0.05V4(—j20) = Vo(1 — j1) = 720 + j240 V(rms) Short circuit current: docsity.com 10-36 CHAPTER 10. Sinusoidal Steady State Power Calculations ZG. Ae 1h 102 + 4202 cv0/0"d y V (rms) & ®§ 31002 Tye Va / Tue = 0.05Vg + —55 = (0.05 + 30.05) Ve Ver M8 4 Me Ao . V6 = 480 + 7240 V(rms) Tec = (0.05 + 30.05) (480 + j240) = 12 + 736 A(rms) Vim _ 720-+ 3240 Zon = Th = OE = 12 — 516 = 20/— 53.13° t= 12+ 736 12 — 716 = 20/— 53.13° Ry = 202 [b] r 12Q -416Q 72043240 3) 202 Virms) 720 + 5240 ; == = PAI 32-716 15 + j15 = 15/2/45° A(rms) P = (15/2)?(20) = 9000 W = 9kW Ie] r Wy Li o AWN 12Q -316Q 12Q 720+42404 : Virms) 160 e t= met A = 30+ 710 A(rms) P = (V1000)?(12) = 12kW 3 docsity.com Problems 10-37 [d] ZUM ad V5 - 1092 ~3200 — Seat iioa (rns) WV 1 2 e T, + I, +12 600/o0 4 § solo", Ye j10 «2004600 F ste I V (rms) 3 - ry - 2 Vo = 600 | Ve | Vo ~ 200— 7600 _ 10 j10 —j20 7 V5 = 200 + 7200V 0.05Vg = 10+ 710A 10+ j10+I1c = 30+ 10; Ip =204+j0A V6 ; = —* = 20-2 I. Fo 20 — 720A Tk =Ic +I, = 40-j20A I, = Ix + 0.05Vy = 50 — 710 A(rms) Sq = —600I; = —30,000 — 76000 VA 600 = V5 + 200+ 7600; V., = 400 — j600V Sea = (400 — 3600)(10 — 710) = —2000 — 710,000 VA SY Paev = 30,000 + 2000 = 32,000 W = 32kW ‘ 12 % delivered to Z, = 3g (100) = 37.50% Check: D. Pabs = 12,000 + 1 (10) = 32kW = > Pay SY Qeev = 6000 + 10,000 + [Ic ]?(20) = 24kVAR De Qave = [HL ?(10) + T|?(16) = 24KVAR = > Qaov P 10.49 [a] First find the Thévenin equivalent: 1 10° . joe ae —j1002 docsity.com 10-40 CHAPTER 10. Sinusoidal Steady State Power Calculations [b] P = |1,[?(140) = 560W [ce] P, = (240)(6.4) = 1536 W 560 % delivered = i530 (100) = 36.46% 240/09 240/0° P 10.53 [a] Von = 20+ 74079) + 30 + 740-7) = 480 + j240 V(rms) 20Q j1602 Wi e e a0 °c “ay sa00§ ges yy ‘sc From the solution to Problem 10.49 we can write 240 = (20+ j40)I, — j100I,. 0 = —j1001, + 7320I,. Solving, I,, = 3.15 — j1.377 _ Van _ 480+ 5240 = = = = j120 = 156.20/50.19° Q Zn 1. 315 — 1.377 100 + 7120 = 156.20/50.19 Ry, = 156.202 bl 1002 j120Q AM a Sr 480+43240C 156.202 V (rms) -e 536.66/26.57° 5 a 282.92/25.10° ore P = |I|?(156.20) = 562.05 W 3 docsity.com Problems P 10.54 [a] 202 j160Q NW e A ¢ ° oohe $1402 ‘5 5 240 ‘ J V (rms) “a jana x wy 240 = 201, + j40(I; — Ip) + j80KIn 0 = j40(Iz — Ih) — j80KI2 + 71601 + j80K(I; — Ip) + 1401, or 12 = (1+ j2)I, + j(4k — 2)I, 0 = 9(4k — 2)T, + [7 + j(10 — 8k)]Ip No = —j(4k — 2)(12); I, = 0 when Np =0 V. = 0 when Ip = 0 k=0.5 [b] When Ip = 0 12 = isp 2.4 — j4.8 A(rms) P, = (240)(2.4) = 576 W Check: Prous = |Ii|2(20) = 576. W P 10.55 [a] Vin = (950) = = 380/16.26°V Zap, = 31 + 100+ ay (28 — 796) = 38 +776 Z, = 38 — 7769 1, = 2800626" = 4.9 4 51.4 = 5/16.26° A(rms) 76 = [I,|?(38) = 950 W 10-41 docsity.com 10-42 CHAPTER 10. Sinusoidal Steady State Power Calculations 450 8Q 3562 202 YY 312 380 Wy AMY 7 . AW e AMY nen os —>t, —>(4.84+41.4)a Vv (rms) j40Q j1009 7-j76Q —o— 760/0° = 1,(28 + 596) — 750(4.8 + 71.4) _ 690 + 7240 * 100/73.74° 5q(delivered) = 760(4.24 + j5.95) = 3219.36 + j4523.52 VA = 7.31/— 54.56° = 4.24 — j5.95 A Pros = |Ii|?(8) = 426.96 W Py (transformer) = 3219.36 — 426.96 = 2792.40 W . 950 % delivered to Z, = 3793.4 (10) = 34.02% P 10.56 [a] jwL1 = j(5000)(2 x 10-*) = 7102 jwL2 = j(5000)(8 x 10-*) = 7402 3109 10Q 70 = (10+ j10)I, + 7101, 0 = j101, + (30+ 740)I, Solving, I, =4—-j3A; IL=-1A Thus, tg = 5.cos(5000t — 36.87°) A zz = 1cos(5000¢ — 180°) A M 2 = =05 Til, V16 [b] k= docsity.com Problems 10-45 Ip=2+j1A Solving, 1, =4/A Z, = 80/4 = 20+ j02 P 10.58 10Q_.r, rm r, ANN 122.8. 1:4 ° e ° + + 100v A mp owe || Ew EIT Eo, Fae ideal | @— ideal] Va V.=4V:,; 4I, =I,; therefore Lo 2502 a -V, Vv 2. MeeVee 2.514; therefore V8 — 2 _ sng I, 6.25 Therefore I}, = [100/(10 + 40)] = 2.A (rms); since the ideal transformers are lossless, Pixq = Pion, and the power delivered to the 4kQ resistor is 2?(40) or 160 W. P 10.59 [al 10Q_1:2.5 La 4% ae e ie... 10010 >) y, } y, 3 Vi Veems)O 1, : vy, Eo ideal ideal 10+Vi=100; I,=-25h; Vi =—-V2/2.5 10(—2.5I,) — V2/2.5 = 100 Ip=al.=0; V2=Vec/a; —10[—2.5(0)] — Voc/2.5a = 100 Voc = —250a 3 docsity.com 10-46 CHAPTER 10. Sinusoidal Steady State Power Calculations 1002 1:2.5 lia +* + Ly J*s 100/0° - vem Mi | 4, | a - ae - Ig ideal ideal 101, + Vi = 100; I, = —2.51,; Vy = —V2/2.5 10(—2.51,) — V2/2.5 = 100 V2 = V3/a = 0; I, = al,,; 10[—2.5(aI,¢)] — 0 = 100 I... = 100/(—2.5a) = —4/a Voe _ —250a ~ T —4/a For maximum power to the 4 kQ load, 4000 = Zyy, = 62.5a?; so a=8 [b] The circuit, with everything to the left of the 4 kQ load resistor replaced by its Thevenin eanivalent: = 62.50" 4kQ 2000/0° . Viems) We4kQ _ Vi _ (-1000)? _ = 3909 = 4000 = 250 . 20)? F . © P 10.60 [a] Zr = 32+ 71244 (=) (3 — j4) = 80 + j60 = 100/36.87°Q Ze» = 1002 A. 2 = TEN NP (1+ i /N2)? = 3600/100 = 36 ~ M/No=5 or Np =N,/5 . No = 300 turns 3 docsity.com Problems 240/0° [b] Vin = 0/0" (520) = 960/36.87° V 3+ 94 80Q j602 | St, 960 46.874 af. C 1002 960/36.87° ° I= 191700 = 1.6V10/18.43° A(rms) || = 1.6V/10 A(rms) P =(I/?(100) = 2560 W [e] 3Q 420Q 32Q 4.84+51.6)A IAS 31.6) 1002 240/0° = (3 + 74)Ih — j20(4.8 + 71.6) *. I, = 40.32 — j21.76 A(rms) Peon = (240)(40.32) = 9676.80 W Paiss = 9676.80 — 2560 = 7116.80 W a 7116.80. % dissipated = 9676.80 (190) = 73.54% P 10.61 [al 5 20k 240° [ Vv (rms) Zan ? For maximum power transfer, 7, = 20kQ Ni? Zn = (1-72) Ly Ny)? _ 20,000 _ (-%) = = = 400 10-47 docsity.com 10-50 CHAPTER 10. Sinusoidal Steady State Power Calculations 19 10A 20¢ 10v 192 V (rms) P = (10)?(1) = 100W {b] 10 a 10a + lov - 10 4Q . 0.25Q WV AWN: ah AW ,| dow, +e e+ 45 25 fi ¢ vy, vy 210 Vv (ems) a 25 = (10+1,)(1) +4, + Vi A = 49, (0.25) + (41, + 10)(1) Solving, L=-1A *. Prource = (25)(10 — 1) = 225 W s 100 % delivered = 395 (100) = 44.44% [e] Paey = 25(10 — 1) = 225W Pio = (9)°(1) =81W; Pin = (-1)°(4) = 4W Pio = (10)°(1) = 100W; Phase = (—4)°(0.25) = 4W Pro = (10 — 4)?(1) = 36 W DY Pats = 81 +4 + 100-44 +36 = 225 W = D> Paey | 3 docsity.com Problems 10-51 P 10.63 [a] Open circuit voltage: 20kQ T3 5kQ 1kQ re 10kQ We AMY . ANN <9 fo (Z,42,) I, +e et i + 00°C %, ov, rn V (rms) = = ° 100/0° = 5000(1; + Is) + 20,0001; + Vn, I, = —5I3 100 = 5000(—5I3 + Is) + 20,00013 + Vin Solving, Vin = 100/0° V Short circuit current: M 20kQ a §kQ 1kQ 10kQ AWA AN ss Wy , | ety) I, +e e+ S 100 A : v, S¥, Isc Vv (rms) 100/0° = 50001, + 50001; + 10001, + V; 5V, = 25,000(1,/5); <. Vi = 10001, 100/0° = 70001, + 500013 Also, 100/0° = 5000(I, + I3) + 20,0001; Solving, I, = 13.33 mA; I; = 1.33 mA; I,, =1)/5+1; =4mA docsity.com 10-52 CHAPTER 10. Sinusoidal Steady State Power Calculations eo cet ee Ron L. 0.004 5kO 25kQ AMY 0 > roof 2 25kQ Vv (rms) 100/0° 5 I= 50,000 = 2/0° mA(rms) P = (0.002)?(25,000) = 100 mW [b] i 20kQ Ta 5kQ uwQ 10kQ ANA AM . Wy I, + @+ I,7+ (I,+Z,) 1 a wf * ° ¥, sy, > SOVE25kQ V (rms) = 100 = 5000(I; + Iz) + 20,0001; + 50 5V, = 10,000 (3) +50 100 = 5000(I, + Is) + 10001, + V; I, = 14.82 mA; I; = —0.963 mA; I, +I = 13.857/0° mA Pioov (developed) = 100(13.857 m) = 1386 mW 100 1386 le] Pe, =100mW; Pigg = (2.96 m)?(10k) = 87.9mW ko = (0.963m)°(20k) = 18.6mW; Py. = (13.857m)?(5000) = 960.1 mW % delivered = (100) = 7.22% Pool Pike = (14.82 m)?(1000) = 219.6 mW Dd Pave = 100 + 87.9 + 18.6 + 960.1 + 219.6 = 1386 mW = YS Pav 3 docsity.com [c] Note that the HIGH setting has R; and Ry in parallel: Vv? 120? Pics = TR, ~ 28.8] 288 = 1000 W 10-55 If the HIGH setting has required power other than 1000 W, this problem could not have been solved. In other words, the HIGH power setting was chosen in such a way that it would be satisfied once the two resistor values were calculated to satisfy the LOW and MEDIUM power settings. v? v2 10. PF, = >—;5y =— P 10.67 [a] P, R, +R, Ry + Re B v2 Ve Pu = Ry R= Pa y= V?(Ri + Re) a= Ri v? v2 ov? Rit R= pi Mapp, B V?V?/PL PuPiPu H™ 7 _v2)\)()~ P(PR,—P) (mH) (Re) Pen.) Ph ee (750)2 =— =] [b] Pa (750 — 250) 125W P 10.68 First solve the expression derived in P10.67 for Py as a function of PR, and Py. Thus Pz P2 Pu Pi= pe or Beth =0 Pi — PuPa + PuPa = 0 2 A= * ae (=) — PLP _ Pa i zt) = HPaylZ cS For the specified values of P, and Py Pu = 500 + 1000/0.25 — 0.24 = 500 + 100 docsity com 10-56 CHAPTER 10. Sinusoidal Steady State Power Calculations P 10.69 *. Py = 600 W; Pua = 400 W Note in this case we design for two medium power ratings If Pui = 600 W (120)? a= 00 = 240 (120)2 240 R, = 60 — 24 = 362 (120)2(60) (36) (24) Ry+ R= = 602 CHECK: Py = = 1000 W If Pu2 = 400 W Ri + Re = 60 (as before) Ry = 242 CHECK: Py = 1000 W 120)? Ri + Ro+ Rs = ce = 240 (120)? 900 Ry = 24-16 = 80 120)? Rs + Rl|Ro = teu =129 8Re 8+ Ro Ro+ R3= = 162 16—Ro+ =12 8Ry Ro - =4 B+ Re 8R2 + RZ -8Ry = 32+4R, F3—4R, -32=0 Ry = 24 V1F32 =246 Ry =89; Ry =82 docsity.com P 10.70 Rp = (220)2 = 96.82 5007 = 968 Ry + Ry = 22)" _ 93.60 pene" 50 Ry, = 96.82 CHECK: Rj||R2 = 48.40 (220)2 P= BA = 1000 W Problems 10-57 docsit com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved