Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Sinusoidal AC Steady State - Engineering Circuit Analysis - Lecture Slides, Slides of Electrical Circuit Analysis

These are the Lecture Slides of Engineering Circuit Analysis which includes Units of Volts and Amps, Complex Number, Resistive Component, Series

Typology: Slides

2012/2013

Uploaded on 03/26/2013

abduu
abduu 🇮🇳

4.4

(47)

200 documents

1 / 59

Toggle sidebar

Related documents


Partial preview of the text

Download Sinusoidal AC Steady State - Engineering Circuit Analysis - Lecture Slides and more Slides Electrical Circuit Analysis in PDF only on Docsity! Engineering 43 Sinusoidal AC SteadySt Docsity.com Outline – AC Steady State • SINUSOIDS – Review basic facts about sinusoidal signals • SINUSOIDAL AND COMPLEX FORCING FUNCTIONS – Behavior of circuits with sinusoidal independent current & voltage sources – Modeling of sinusoids in terms of complex exponentials Docsity.com Sinusoids • Recall From Trig the Sine Function  Where • XM  “Amplitude” or Peak or Maximum Value – Typical Units = A or V • ω  Radian, or Angular, Frequency in rads/sec • ωt  Sinusoid argument in radians (a pure no.)  The function Repeats every 2π; mathematically  For the RADIAN Plot Above, The Functional Relationship )()2( txtx   tXtx M sin)(  Docsity.com Sinusoids cont. • Now Define the “Period”, T Such That  How often does the Cycle Repeat? • Define Next the CYCLIC FREQUENCY  From Above Observe   )()()2( txTtxtx   ) all(for ),() and 2 2 ttTtxx(t TT       Now Can Construct a DIMENSIONAL (time) Plot for the sine  TtXtx M 2sin)(  Docsity.com Sinusoids cont.2 • Now Define the Cyclic “Frequency”, f  Quick Example • USA Residential Electrical Power Delivered as a 115Vrms, 60Hz, AC sine wave  Describes the Signal Repetition-Rate in Units of Cycles-Per-Second, or HERTZ (Hz) • Hz is a Derived SI Unit    tVtv tVtv residence residence   99.376sin6.162)( 602sin1152)( f T f    2 2 1    Will Figure Out the 2 term Shortly • RMS  “Root (of the) Mean Square” Docsity.com Sinusoid Phase Difference -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Time (S) x i ( V o r A ) x1 (V or A) x2 (V or A) file =Sinusoid_Lead-Lag_Plot_0311.xls Out of Phase * 0.733 rads * 42° * 105 mS PARAMETERS • T = 900 mS • f = 1.1111 Hz •  = 6.981 rad/s •  = 1.257 rads = 72° •  = 0.5236 rads = 30° x1 LEADs x2 x2 LAGs x1 For Different Amplitudes, Measure Phase Difference • peak-to-peak • valley-to-valley • ZeroCross-to-ZeroCross    42 1 360 900 1 105 PeriodmS Period mS Docsity.com Useful Trig Identities • To Convert sin↔cos  To Make a Valid Phase-Angle Difference Measurement BOTH Sinusoids MUST have the SAME Frequency & Trig-Fcn (sin OR cos) • Useful Phase-Difference ID’s  )sin(sin )cos(cos     tt tt               2 cossin 2 sincos     tt tt  Additional Relations   sinsincoscos)cos( sincoscossin)sin(     sinsincoscos)cos( sincoscossin)sin(   (rads) rads 180 (degrees) 360 radians 2        Docsity.com Example  Phase Angles • Given Signals  Find • Frequency in Standard Units of Hz • Phase Difference  Frequency in radians per second is the PreFactor for the time variable • Thus  To find phase angle must express BOTH sinusoids using • The SAME trigonometric function; – either sine or cosine • A POSITIVE amplitude )301000cos(6)( )601000sin(12)( 2 1   ttv ttv Hz 2.159 2 )Hz( S 1000 -1      f Docsity.com Effective or rms Values • Consider Instantaneous Power For a Purely Resistive Load  Since a Resistive Load Dissipates this Power as HEAT, the Effective Value is also called the HEATING Value for the Time-Variable Source • For example – A Car Coffee Maker Runs off 12 Vdc, and Heats the Water in 223s. – Connect a SawTooth Source to the coffee Maker and Adjust the Amplitude for the Same Time → Effective Voltage of 12V  Now Define The EFFECTIVE Value For a Time-Varying Signal as the EQUIVALENT DC value That Supplies The SAME AVERAGE POWER )(ti R Rtitp )()( 2 Docsity.com rms Values Cont. • For The Resistive Case, Define Ieff for the Avg Power Condition  If the Current is DC, then i(t) = Idc, so  The Pav Calc For a Periodic Signal by Integ  Now for the Time- Variable Current i(t) → Ieff, and, by Definition )(ti R RIP Rtitp effav 2 2 )()(              Tt t Tt t av dtti T Rdttp T P 0 0 0 0 )( 1 )( 1 2 22 2 0 0 0 0 )(1 1 1 dc Tt t dc Tt t dcav RIdtt T RI dtI T RP                        avdceffav PRIRIP  22 Docsity.com rms Values cont.2 • In the Pwr Eqn  Examine the Eqn for Ieff and notice it is Determined by • Taking the Square ROOT of the time-averaged, or MEAN, SQUARE of the Current  In Engineering This Operation is given the Short-hand notation of “rms”  So  Equating the 1st & 3rd Expression for Pav find 222 0 0 )( 1 effdc Tt t av RIRIdtti T RP                Tt t eff dtti T I 0 0 )( 1 2  This Expression Holds for ANY Periodic Signal rmseff II  Docsity.com RMS Value for Sinusoid • Rearranging a bit • But the integral of a sinusoid over ONE PERIOD is ZERO, so the 2nd Term goes to Zero leaving   21 0 0 22cos 1 2 1 1 1 2 1          dttT dt T II T T Mrms  0 212 1 12 1 1 1 2 1 21 21 0 21 0 M M T M T Mrms IT T I t T Idt T II                               Docsity.com Sinusoidal rms Alternative • For a Sinusoidal Source Driving a Complex (Z = R + jX) Load  Similarly for the rms Current  If the Load is Purely Resistive  Now, By the “effective” Definition for a R Load 2 , 2 , 2 1 2 1 resM resM av RI R V P    2 2 2 1 2 1 M M av RI R V P  MMrms rmsM rmseffdcM av VVV VV R V R V R V R V P 707.02 2 2 1 22 2222    MMrms rmsM rmseffdcMav III II RIRIRIRIP 707.02 2 2 1 22 2222    Docsity.com Sinusoidal rms Values cont • In General for a Sinusoidal Quantity  Thus the Power to a Reactive Load Can be Calculated using These Quantities as Measured at the SOURCE • Using a True-rms DMM – The rms Voltage – The rms Current • Using an Oscilloscope and “Current Shunt” – The Phase Angle Difference  For the General, Complex-Load Case  By the rms Definitions 2 is valueeffective theand )cos()( Mrmseff M UUU tUtu    )cos( 22 )cos( 2 1 iv MM ivMMav IV IVP     )cos( ivrmsrmsav IVP   Docsity.com Example  Average Power • Given Current Waveform Thru a 10Ω Resistor, then Find the Average Power  The “squared” Version  Find The Period • T = 8 s  Apply The rms Eqns  Then the Power    Tt t rms dttu T U 0 0 )( 1 2 RIP rmsav 2   2 6 4 2 2 0 22 844 8 1 Adtdt s I s s s rms         WARIP rmsav 80108 22  Docsity.com Sinusoidal Forcing Functions • Consider the Arbitrary LINEAR Ckt at Right. • If the independent source is a sinusoid of constant frequency then for ANY variable in the LINEAR circuit the STEADY-STATE Response will be SINUSOIDAL and of the SAME FREQUENCY  Mathematically  Thus to Find iss(t), Need ONLY to Determine Parameters A &  )sin()( )sin()(     tAti tVtv SS M Docsity.com Example  RL Single Loop • Given Simple Ckt Find i(t) in Steady State • Write KVL for Single Loop  In Steady State Expect  Sub Into ODE and Rearrange     dt tdi LtRitv  )(     tAtAt dt di tAtAti tAtAti tAtAti tAti      cossin)( sincos)( sinsincoscos)( sinsincoscos)( sinysinx-cosycosx y)cos(x using )cos()( 21 21       tRAAL tRAAL tVM    cos)( sin)( cos 12 21    Docsity.com Example  RL Loop cont.3 • Dividing These Eqns Find  Now  Elegant Final Result, But VERY Tedious Calc for a SIMPLE Ckt  • Not Good  Subbing for A &  in Solution Eqn       2222 22 sincos sincos AA AA      Find A to be R L A A      cos sin tan 22 )( LR V A M             R L t LR V ti M    1 22 tancos )( )( Docsity.com Complex Exponential Form • Solving a Simple, One-Loop Circuit Can Be Very Tedious for Sinusoidal Excitations • To make the analysis simpler relate sinusoidal signals to COMPLEX NUMBERS. – The Analysis Of the Steady State Will Be Converted To Solving Systems Of Algebraic Equations ...  Start with Euler’s Identity (Appendix A) sincos  je j  • Where 1j  Note: • The Euler Relation can Be Proved Using Taylor’s Series (Power Series) Expansion of ej Docsity.com Complex Exponential cont • Now in the Euler Identity, Let  So  Notice That if t  tjte tj  sincos   Next Multiply by a Constant Amplitude, VM tjVtVeV MM tj M   sincos   Separate Function into Real and Imaginary Parts     tVeV tVeV M tj M M tj M     sinIm cosRe         tVeVtv tVtv M tj M M    cosRe Then cos    Now Recall that LINEAR Circuits Obey SUPERPOSITION Docsity.com Realizability • We can NOT Build Physical (REAL) Sources that Include IMAGINARY Outputs  We CAN, However, BUILD These  We can also NOT invalidate Superposition if we multiply a REAL Source by ANY CONSTANT Including “j”  Thus Superposition Holds, mathematically, for   tjVtv M sin2    tVtv M cos1  General Linear Circuit tjV eV M tj M   sin tV tV M M   sin cos tjVtVeV MM tj M   sincos  Docsity.com Example  RL Single Loop • This Time, Start with a COMPLEX forcing Function, and Recover the REAL Response at The End of the Analysis – Let  In a Linear Ckt, No Circuit Element Can Change The Driving Frequency, but They May induce a Phase Shift Relative to the Driving Sinusoid  Thus Assume Current Response of the Form tj M eVtv )( tj M eVtv )(     tjjMtjM eeIeIti   )(  Then The KVL Eqn )()()( t dt di LtRitv  Docsity.com Example – RL Single Loop cont. • Taking the 1st Time Derivative for the Assumed Solution  Then the Right-Hand- Side (RHS) of the KVL  Then the KVL Eqn tj M eVtv )(  Canceling ejt and Solving for IMe j           tjMtjM eIjeI dt d dt tdi           tjjM tj M tj M tj M eeIRLj eIRLj eIReIjL tRit dt di L       )( )( )()(       tj M tjj M eVeeIRLj   )( RLj V eI MjM     Docsity.com Example – RL Single Loop cont.4 • The Complex Exponential Soln  Where tj M eVtv )(             R L j Mj M e LR V eI    1tan 22  Recall Assumed Soln   R L LR V I MM    1 22 tan,     Finally RECOVER the DESIRED Soln By Taking the REAL Part of the Response              tjtI eIeeIti M tj M tjj M sincos )( Docsity.com Example – RL Single Loop cont.5 • By Superposition  Explicitly tj M eVtv )(             R L t LR V ti M    1 22 tancos )(  SAME as Before   )cos()( }Re{)( }Re{cos)(         tIti eIti eVtVtv M tj M tj MM  Docsity.com Phasor Notation • If ALL dependent Quantities In a Circuit (ALL i’s & v’s) Have The SAME FREQUENCY, Then They differ only by Magnitude and Phase – That is, With Reference to the Complex-Plane Diagram at Right, The dependent Variable Takes the form  Borrowing Notation from Vector Mechanics The Frequency PreFactor Can Be Written in the Shorthand “Phasor” Form     tjjtj eAeAetx   )(  A b a Real Imaginary   AAe j Docsity.com Example  RL Single Loop cont. • To recover the desired Time Domain Solution Substitute  Then by Superposition Take  This is A LOT Easier Than Previous Methods  The Solution Process in the Frequency Domain Entailed Only Simple Algebraic Operations on the Phasors tj M VevV  0V   tjjMM eeIiI  I                 tI eI eeIti M tj M tjj M cos Re Re Docsity.com Resistors in Frequency Domain • The v-i Reln for R  Thus the Frequency Domain Relationship for Resistors               MM tj M tj M M RIV eVeRI tIti tRitv Then cos if )()( )()( IV R Docsity.com Resistors in -Land cont. • Phasors are complex numbers. The Resistor Model Has A Geometric Interpretation  In the Complex-Plane The Current & Voltage Are CoLineal • i.e., Resistors induce NO Phase Shift Between the Source and the Response • Thus resistor voltage and current sinusoids are said to be “IN PHASE” R → IN Phase Docsity.com Inductors in -Land cont.2 • In the Time Domain  Phase Relationship Descriptions • The VOLTAGE LEADS the current by 90° • The CURRENT LAGS the voltage by 90°  Short Example )( Find )20377cos(12)(,20 Given ti ttvmHL          90 2012 901 with so AVL V j  I )(70 1020377 12 3 A    I  In the Time Domain   )70377cos(593.1)(  tAti Lj  V I V    2012 377 L → current LAGS Docsity.com Capacitors in Frequency Domain • The v-i Reln for C  Thus the Frequency Domain Relationship for Capacitors      vi v vi j M j M tj M tj M tj M eCVjeI eCVj eV dt d CeI           or )( VI Cj Docsity.com Capacitors in -Land cont. • The relationship between phasors is algebraic. – Recall  Thus  909011 jej         90 90 90 VI C eCV eCVe eCVjeI v v vi j M j M j j M j M         Therefore the Voltage and Current are OUT of PHASE by 90° • Plotting the Current and Voltage Vectors in the Complex Plane Docsity.com Complex Numbers Reviewed • Consider a General Complex Number  This Can Be thought of as a VECTOR in the Complex Plane  This Vector Can be Expressed in Polar (exponential) Form Thru the Euler Identity  Where )sin(cos   jA Aejba j   jban   A b a Real Imaginary 11  jjj  Then from the Vector Plot a b baA 1 22 tan   Docsity.com Complex Number Arithmetic • Consider Two Complex Numbers  The SUM, Σ, and DIFFERENCE, , for these numbers  The PRODUCT n•m   j j Dejdcm Aejban    Complex DIVISION is Painfully Tedious • See Next Slide        dbjcamn dbjcamn                  jjj ADeDeAemn adbcjbdac bdjadbcjac jdcjbamn 2 Docsity.com Complex Number Division • For the Quotient n/m in Rectangular Form  The Generally accepted Form of a Complex Quotient Does NOT contain Complex or Imaginary DENOMINATORS  Use the Complex CONJUGATE to Clear the Complex Denominator jdc jba m n     The Exponential Form is Cleaner • See Next Slide         22 22 2 dc adbcjbdac m n dcddcjc bdjadbcjac m n jdc jdc jdc jba m n             Docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved