Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Sinusoidal Steady State Analysis-Circuit And Network Analysis-Solution Manual, Exercises of Electrical Circuit Analysis

This is solution manual for problems related Electrical Circuit Analysis course. It was provided at National Institute of Industrial Engineering by Prof. Sanjay Das. It includes: Sinusoidal, Steady, State, Analysis, Delta, Circuit, Equivalent, Wye, Parallel, Branches

Typology: Exercises

2011/2012
On special offer
30 Points
Discount

Limited-time offer


Uploaded on 07/23/2012

gannak
gannak 🇮🇳

4.6

(24)

72 documents

1 / 60

Toggle sidebar
Discount

On special offer

Related documents


Partial preview of the text

Download Sinusoidal Steady State Analysis-Circuit And Network Analysis-Solution Manual and more Exercises Electrical Circuit Analysis in PDF only on Docsity! 9 Sinusoidal Steady State Analysis Assessment Problems AP 9.1 [a] V = 170/−40◦ V [b] 10 sin(1000t + 20◦) = 10 cos(1000t − 70◦) ·. . I = 10/−70◦ A [c] I = 5/36.87◦ + 10/−53.13◦ = 4 + j3 + 6 − j8 = 10 − j5 = 11.18/−26.57◦ A [d] sin(20,000πt + 30◦) = cos(20,000πt − 60◦) Thus, V = 300/45◦ − 100/−60◦ = 212.13 + j212.13 − (50 − j86.60) = 162.13 + j298.73 = 339.90/61.51◦ mV AP 9.2 [a] v = 18.6 cos(ωt − 54◦) V [b] I = 20/45◦ − 50/− 30◦ = 14.14 + j14.14 − 43.3 + j25 = −29.16 + j39.14 = 48.81/126.68◦ Therefore i = 48.81 cos(ωt + 126.68◦) mA [c] V = 20 + j80 − 30/15◦ = 20 + j80 − 28.98 − j7.76 = −8.98 + j72.24 = 72.79/97.08◦ v = 72.79 cos(ωt + 97.08◦) V AP 9.3 [a] ωL = (104)(20 × 10−3) = 200 Ω [b] ZL = jωL = j200 Ω 9–1 docsity.com 9–2 CHAPTER 9. Sinusoidal Steady State Analysis [c] VL = IZL = (10/30◦)(200/90◦) × 10−3 = 2/120◦ V [d] vL = 2 cos(10,000t + 120◦) V AP 9.4 [a] XC = −1 ωC = −1 4000(5 × 10−6) = −50 Ω [b] ZC = jXC = −j50 Ω [c] I = V ZC = 30/25◦ 50/−90◦ = 0.6/115 ◦ A [d] i = 0.6 cos(4000t + 115◦) A AP 9.5 I1 = 100/25◦ = 90.63 + j42.26 I2 = 100/145◦ = −81.92 + j57.36 I3 = 100/−95◦ = −8.72 − j99.62 I4 = −(I1 + I2 + I3) = (0 + j0) A, therefore i4 = 0 A AP 9.6 [a] I = 125/−60◦ |Z|/θz = 125 |Z| /(−60 − θZ) ◦ But −60 − θZ = −105◦ ·. . θZ = 45◦ Z = 90 + j160 + jXC ·. . XC = −70 Ω; XC = − 1 ωC = −70 ·. . C = 1 (70)(5000) = 2.86 µF [b] I = Vs Z = 125/−60◦ (90 + j90) = 0.982/−105◦A; ·. . |I| = 0.982 A AP 9.7 [a] ω = 2000 rad/s ωL = 10 Ω, −1 ωC = −20 Ω Zxy = 20‖j10 + 5 + j20 = 20(j10)(20 + j10) + 5 − j20 = 4 + j8 + 5 − j20 = (9 − j12) Ω docsity.com Problems 9–5 AP 9.11 Use the lower node as the reference node. Let V1 = node voltage across the 20 Ω resistor and VTh = node voltage across the capacitor. Writing the node voltage equations gives us V1 20 − 2/45◦ + V1 − 10Ix j10 = 0 and VTh = −j10 10 − j10(10Ix) We also have Ix = V1 20 Solving these equations for VTh gives VTh = 10/45◦V. To find the Thévenin impedance, we remove the independent current source and apply a test voltage source at the terminals a, b. Thus It follows from the circuit that 10Ix = (20 + j10)Ix Therefore Ix = 0 and IT = VT −j10 + VT 10 ZTh = VT IT , therefore ZTh = (5 − j5) Ω AP 9.12 The phasor domain circuit is as shown in the following diagram: docsity.com 9–6 CHAPTER 9. Sinusoidal Steady State Analysis The node voltage equation is −10 + V 5 + V −j(20/9) + V j5 + V − 100/−90◦ 20 = 0 Therefore V = 10 − j30 = 31.62/−71.57◦ Therefore v = 31.62 cos(50,000t − 71.57◦) V AP 9.13 Let Ia, Ib, and Ic be the three clockwise mesh currents going from left to right. Summing the voltages around meshes a and b gives 33.8 = (1 + j2)Ia + (3 − j5)(Ia − Ib) and 0 = (3 − j5)(Ib − Ia) + 2(Ib − Ic). But Vx = −j5(Ia − Ib), therefore Ic = −0.75[−j5(Ia − Ib)]. Solving for I = Ia = 29 + j2 = 29.07/3.95◦ A. AP 9.14 [a] M = 0.4 √ 0.0625 = 0.1 H, ωM = 80 Ω Z22 = 40 + j800(0.125) + 360 + j800(0.25) = (400 + j300) Ω Therefore |Z22| = 500 Ω, Z∗22 = (400 − j300) Ω Zr = ( 80 500 )2 (400 − j300) = (10.24 − j7.68) Ω [b] I1 = 245.20 184 + 100 + j400 + Zr = 0.50/− 53.13◦ A i1 = 0.5 cos(800t − 53.13◦) A [c] I2 = ( jωM Z22 ) I1 = j80 500/36.87◦ (0.5/− 53.13◦) = 0.08/0◦ A i2 = 80 cos 800t mA docsity.com Problems 9–7 AP 9.15 I1 = Vs Z1 + Z2/a2 = 25 × 103/0◦ 1500 + j6000 + (25)2(4 − j14.4) = 4 + j3 = 5/36.87◦ A V1 = Vs − Z1I1 = 25,000/0◦ − (4 + j3)(1500 + j6000) = 37,000 − j28,500 V2 = − 125V1 = −1480 + j1140 = 1868.15/142.39 ◦ V I2 = V2 Z2 = 1868.15/142.39◦ 4 − j14.4 = 125/− 143.13 ◦ A Also, I2 = −25I1 docsity.com 9–10 CHAPTER 9. Sinusoidal Steady State Analysis P 9.6 [a] T 2 = 8 + 2 = 10 ms; T = 20 ms f = 1 T = 1 20 × 10−3 = 50Hz [b] v = Vm sin(ωt + θ) ω = 2πf = 100π rad/s 100π(−2 × 10−3) + θ = 0; ·. . θ = π 5 rad = 36◦ v = Vm sin[100πt + 36◦] 80.9 = Vm sin 36◦; Vm = 137.64 V v = 137.64 sin[100πt + 36◦] = 137.64 cos[100πt − 54◦] V P 9.7 u = ∫ to+T to V 2m cos 2(ωt + φ) dt = V 2m ∫ to+T to 1 2 + 1 2 cos(2ωt + 2φ) dt = V 2m 2 {∫ to+T to dt + ∫ to+T to cos(2ωt + 2φ) dt } = V 2m 2 { T + 1 2ω [ sin(2ωt + 2φ) |to+Tto ]} = V 2m 2 { T + 1 2ω [sin(2ωto + 4π + 2φ) − sin(2ωto + 2φ)] } = V 2m ( T 2 ) + 1 2ω (0) = V 2m ( T 2 ) P 9.8 Vm = √ 2Vrms = √ 2(120) = 169.71 V P 9.9 [a] The numerical values of the terms in Eq. 9.8 are Vm = 20, R/L = 1066.67, ωL = 60 √ R2 + ω2L2 = 100 φ = 25◦, θ = tan−1 60/80, θ = 36.87◦ Substitute these values into Equation 9.9: i = [ −195.72e−1066.67t + 200 cos(800t − 11.87◦) ] mA, t ≥ 0 [b] Transient component = −195.72e−1066.67t mA Steady-state component = 200 cos(800t − 11.87◦) mA [c] By direct substitution into Eq 9.9 in part (a), i(1.875 ms) = 28.39 mA [d] 200 mA, 800 rad/s, −11.87◦ docsity.com Problems 9–11 [e] The current lags the voltage by 36.87◦. P 9.10 [a] From Eq. 9.9 we have L di dt = VmR cos(φ − θ)√ R2 + ω2L2 e−(R/L)t − ωLVm sin(ωt + φ − θ)√ R2 + ω2L2 Ri = −VmR cos(φ − θ)e−(R/L)t√ R2 + ω2L2 + VmR cos(ωt + φ − θ)√ R2 + ω2L2 L di dt + Ri = Vm [ R cos(ωt + φ − θ) − ωL sin(ωt + φ − θ)√ R2 + ω2L2 ] But R√ R2 + ω2L2 = cos θ and ωL√ R2 + ω2L2 = sin θ Therefore the right-hand side reduces to Vm cos(ωt + φ) At t = 0, Eq. 9.9 reduces to i(0) = −Vm cos(φ − θ)√ R2 − ω2L2 + Vm cos(φ − θ)√ R2 + ω2L2 = 0 [b] iss = Vm√ R2 + ω2L2 cos(ωt + φ − θ) Therefore L diss dt = −ωLVm√ R2 + ω2L2 sin(ωt + φ − θ) and Riss = VmR√ R2 + ω2L2 cos(ωt + φ − θ) L diss dt + Riss = Vm [ R cos(ωt + φ − θ) − ωL sin(ωt + φ − θ)√ R2 + ω2L2 ] = Vm cos(ωt + φ) P 9.11 [a] Y = 50/60◦ + 100/− 30◦ = 111.8/− 3.43◦ y = 111.8 cos(500t − 3.43◦) [b] Y = 200/50◦ − 100/60◦ = 102.99/40.29◦ y = 102.99 cos(377t + 40.29◦) [c] Y = 80/30◦ − 100/− 225◦ + 50/− 90◦ = 161.59/− 29.96◦ y = 161.59 cos(100t − 29.96◦) docsity.com 9–12 CHAPTER 9. Sinusoidal Steady State Analysis [d] Y = 250/0◦ + 250/120◦ + 250/− 120◦ = 0 y = 0 P 9.12 [a] 1000Hz [b] θv = 0◦ [c] I = 200/0◦ jωL = 200 ωL /− 90◦ = 25/− 90◦; θi = −90◦ [d] 200 ωL = 25; ωL = 200 25 = 8 Ω [e] L = 8 2π(1000) = 1.27 mH [f] ZL = jωL = j8 Ω P 9.13 [a] ω = 2πf = 314,159.27 rad/s [b] I = V ZC = 10 × 10−3/0◦ 1/jωC = jωC(10 × 10−3)/0◦ = 10 × 10−3ωC/90◦ ·. . θi = 90◦ [c] 628.32 × 10−6 = 10 × 10−3 ωC 1 ωC = 10 × 10−3 628.32 × 10−6 = 15.92 Ω, ·. . XC = −15.92 Ω [d] C = 1 15.92(ω) = 1 (15.92)(100π × 103) C = 0.2 µF [e] Zc = j (−1 ωC ) = −j15.92 Ω P 9.14 [a] jωL = j(2 × 104)(300 × 10−6) = j6 Ω 1 jωC = −j 1 (2 × 104)(5 × 10−6) = −j10 Ω; Ig = 922/30 ◦ A docsity.com Problems 9–15 P 9.20 1 jωC = 1 (1 × 10−6)(50 × 103) = −j20 Ω jωL = j50 × 103(1.2 × 10−3) = j60 Ω Vg = 40/0◦ V Ze = −j20 + 30‖j60 = 24 − j8 Ω Ig = 40/0◦ 24 − j8 = 1.5 + j0.5 mA Vo = (30‖j60)Ig = 30(j60)30 + j60(1.5 + j0.5) = 30 + j30 = 42.43/45 ◦ V vo = 42.43 cos(50,000t + 45◦) V P 9.21 [a] Z1 = R1 − j 1 ωC1 Z2 = R2/jωC2 R2 + (1/jωC2) = R2 1 + jωR2C2 = R2 − jωR22C2 1 + ω2R22C22 Z1 = Z2 when R1 = R2 1 + ω2R22C22 and 1 ωC1 = ωR22C2 1 + ω2R22C22 or C1 = 1 + ω2R22C 2 2 ω2R22C2 [b] R1 = 1000 1 + (40 × 103)2(1000)2(50 × 10−9)2 = 200 Ω C1 = 1 + (40 × 103)2(1000)2(50 × 10−9)2 (40 × 103)2(1000)2(50 × 10−9) = 62.5 nF docsity.com 9–16 CHAPTER 9. Sinusoidal Steady State Analysis P 9.22 [a] Y2 = 1 R2 + jωC2 Y1 = 1 R1 + (1/jωC1) = jωC1 1 + jωR1C1 = ω2R1C 2 1 + jωC1 1 + ω2R21C21 Therefore Y1 = Y2 when R2 = 1 + ω2R21C 2 1 ω2R1C21 and C2 = C1 1 + ω2R21C21 [b] R2 = 1 + (50 × 103)2(1000)2(40 × 10−9)2 (50 × 103)2(1000)(40 × 10−9)2 = 1250 Ω C2 = 40 × 10−9 1 + (50 × 103)2(1000)2(40 × 10−9)2 = 8 nF P 9.23 [a] Z1 = R1 + jωL1 Z2 = R2(jωL2) R2 + jωL2 = ω2L22R2 + jωL2R 2 2 R2 + ω2L22 Z1 = Z2 when R1 = ω2L22R2 R22 + ω2L22 and L1 = R22L2 R22 + ω2L22 [b] R1 = (4000)2(1.25)2(5000) 50002 + 40002(1.25)2 = 2500 Ω L1 = (5000)2(1.25) 50002 + 40002(1.25)2 = 625 mH P 9.24 [a] Y2 = 1 R2 − j ωL2 Y1 = 1 R1 + jωL1 = R1 − jωL1 R21 + ω2L21 Therefore Y2 = Y1 when R2 = R21 + ω 2L21 R1 and L2 = R21 + ω 2L21 ω2L1 [b] R2 = 80002 + 10002(4)2 8000 = 10 kΩ L2 = 80002 + 10002(4)2 10002(4) = 20 H docsity.com Problems 9–17 P 9.25 Vg = 500/30◦ V; Ig = 0.1/83.13◦ mA Z = Vg Ig = 5000/− 53.13◦ Ω = 3000 − j4000 Ω z = 3000 + j ( ω − 32 × 10 3 ω ) ω − 32 × 10 3 ω = −4000 ω2 + 4000ω − 32 × 103 = 0 ω = 7.984 rad/s P 9.26 [a] Zeq = 50,000 3 + −j20 × 106 ω ‖(1200 + j0.2ω) = 50,000 3 + −j20 × 106 ω (1200 + j0.2ω) 1200 + j[0.2ω − 20×106 ω ] = 50,000 3 + −j20×106 ω (1200 + j0.2ω) [ 1200 − j ( 0.2ω − 20×106 ω )] 12002 + ( 0.2ω − 20×106 ω )2 Im(Zeq) = −20 × 10 6 ω (1200)2 − 20 × 10 6 ω [ 0.2ω ( 0.2ω − 20 × 10 6 ω )] = 0 −20 × 106(1200)2 − 20 × 106 [ 0.2ω ( 0.2ω − 20 × 10 6 ω )] = 0 −(1200)2 = 0.2ω ( 0.2ω − 20 × 10 6 ω ) 0.22ω2 − 0.2(20 × 106) + 12002 = 0 ω2 = 64 × 106 ·. . ω = 8000 rad/s ·. . f = 1273.24 Hz [b] Zeq = 50,000 3 + −j2500‖(1200 + j1600) = 50,000 3 + (−j2500)(1200 + j1600) 1200 − j900 = 20,000 Ω Ig = 30/0◦ 20,000 = 1.5/0◦ mA ig(t) = 1.5 cos 8000t mA docsity.com 9–20 CHAPTER 9. Sinusoidal Steady State Analysis [b] When L = 8 H: ZT = 400 + 500 × 106(8)2 20002 + 5002(8)2 = 2000 Ω Ig = 200/0◦ 2000 = 100/0◦ mA ig = 100 cos 500t mA When L = 2 H: ZT = 400 + 500 × 106(2)2 20002 + 500(2)2 = 800 Ω Ig = 200/0◦ 800 = 250/0◦ mA ig = 250 cos 500t mA P 9.31 [a] Y1 = 11 2500 × 103 = 4.4 × 10 −6 S Y2 = 1 14,000 + j5ω = 14,000 196 × 106 + 25ω2 − j 5ω 196 × 106 + 25ω2 Y3 = jω2 × 10−9 YT = Y1 + Y2 + Y3 For ig and vo to be in phase the j component of YT must be zero; thus, ω2 × 10−9 = 5ω 196 × 106 + 25ω2 or 25ω2 + 196 × 106 = 5 2 × 10−9 ·. . 25ω2 = 2304 × 106 ·. . ω = 9600 rad/s [b] YT = 4.4 × 10−6 + 14,000196 × 106 + 25(9600)2 = 10 × 10 −6 S ·. . ZT = 100 kΩ Vo = (0.25 × 10−3/0◦)(100 × 103) = 25/0◦ V vo = 25 cos 9600t V docsity.com Problems 9–21 P 9.32 [a] Zg = 500 − j 10 6 ω + 103(j0.5ω) 103 + j0.5ω = 500 − j 10 6 ω + 500jω(1000 − j0.5ω) 106 + 0.25ω2 = 500 − j 10 6 ω + 250ω2 106 + 0.25ω2 + j 5 × 105ω 106 + 0.25ω2 ·. . If Zg is purely real, 10 6 ω = 5 × 105ω 106 + 0.25ω2 2(106 + 0.25ω2) = ω2 ·. . 4 × 106 = ω2 ·. . ω = 2000 rad/s [b] When ω = 2000 rad/s Zg = 500 − j500 + (j1000‖1000) = 1000 Ω ·. . Ig = 20/0 ◦ 1000 = 20/0◦ mA Vo = Vg − IgZ1 Z1 = 500 − j500 Ω Vo = 20/0◦ − (0.02/0◦)(500 − j500) = 10 + j10 = 14.14/45◦ V vo = 14.14 cos(2000t + 45◦) V P 9.33 Zab = 1 − j8 + (2 + j4)‖(10 − j20) + (40‖j20) = 1 − j8 + 3 + j4 + 8 + j16 = 12 + j12 Ω = 16.971/45◦ Ω P 9.34 First find the admittance of the parallel branches Yp = 1 2 − j6 + 1 12 + j4 + 1 2 + 1 j0.5 = 0.625 − j1.875 S Zp = 1 Yp = 1 0.625 − j1.875 = 0.16 + j0.48 Ω Zab = −j4.48 + 0.16 + j0.48 + 2.84 = 3 − j4 Ω Yab = 1 Zab = 1 3 − j4 = 120 + j160 mS = 200/53.13◦ mS docsity.com 9–22 CHAPTER 9. Sinusoidal Steady State Analysis P 9.35 Simplify the top triangle using series and parallel combinations: (1 + j1)‖(1 − j1) = 1 Ω Convert the lower left delta to a wye: Z1 = (j1)(1) 1 + j1 − j1 = j1 Ω Z2 = (−j1)(1) 1 + j1 − j1 = −j1 Ω Z3 = (j1)(−j1) 1 + j1 − j1 = 1 Ω Convert the lower right delta to a wye: Z4 = (−j1)(1) 1 + j1 − j1 = −j1 Ω Z5 = (−j1)(j1) 1 + j1 − j1 = 1 Ω Z6 = (j1)(1) 1 + j1 − j1 = j1 Ω The resulting circuit is shown below: Simplify the middle portion of the circuit by making series and parallel combinations: (1 + j1 − j1)‖(1 + 1) = 1‖2 = 2/3 Ω Zab = −j1 + 2/3 + j1 = 2/3 Ω docsity.com Problems 9–25 [b] ib = 2.5 cos(800t + 90◦) A ic = 10 cos(800t + 36.87◦) A vg = 358.47 cos(800t + 67.01◦) V P 9.41 [a] jωL = j(1000)(100) × 10−3 = j100 Ω 1 jωC = −j 10 6 (1000)(10) = −j100 Ω Using voltage division, Vab = (100 + j100)‖(−j100) j100 + (100 + j100)‖(−j100)(247.49/45 ◦) = 350/0◦ VTh = Vab = 350/0◦ V [b] Remove the voltage source and combine impedances in parallel to find ZTh = Zab: Yab = 1 j100 + 1 100 + j100 + 1 −j100 = 5 − j5 mS ZTh = Zab = 1 Yab = 100 + j100 Ω [c] docsity.com 9–26 CHAPTER 9. Sinusoidal Steady State Analysis P 9.42 Using voltage division: VTh = 36 36 + j60 − j48(240) = 216 − j72 = 227.68/− 18.43 ◦ V Remove the source and combine impedances in series and in parallel: ZTh = 36‖(j60 − j48) = 3.6 + j10.8 Ω P 9.43 Open circuit voltage: V2 10 + 88Iφ + V2 − 15V2 −j50 = 0 Iφ = 5 − (V2/5) 200 Solving, V2 = −66 + j88 = 110/126.87◦ V = VTh Find the Thévenin equivalent impedance using a test source: IT = VT 10 + 88Iφ + 0.8Vt −j50 Iφ = −VT /5 200 IT = VT ( 1 10 − 881/5 200 + 0.8 −j50 ) docsity.com Problems 9–27 ·. . VT IT = 30 − j40 = ZTh IN = VTh ZTh = −66 + j88 30 − j40 = −2.2 + j0 A = 2.2/180 ◦ A The Norton equivalent circuit: P 9.44 Short circuit current Iβ = −6Iβ 2 2Iβ = −6Iβ; ·. . Iβ = 0 I1 = 0; ·. . Isc = 10/−45◦ A = IN The Norton impedance is the same as the Thévenin impedance. Find it using a test source VT = 6Iβ + 2Iβ = 8Iβ, Iβ = j1 2 + j1 IT docsity.com 9–30 CHAPTER 9. Sinusoidal Steady State Analysis V1 20 + j10 + j3V1 50 − j100 + V1 50 − j100 = 250 20 + j10 V1 = 500 − j250 V; Vo = 300 − j400 V = VTh = 500/− 53.13◦ V Short circuit current: Isc = 250/0◦ 70 + j10 = 3.5 − j0.5 A ZTh = VTh Isc = 300 − j400 3.5 − j0.5 = 100 − j100 Ω The Thévenin equivalent circuit: P 9.49 Open circuit voltage: (9 + j4)Ia − Ib = −60/0◦ docsity.com Problems 9–31 −Ia + (9 − j4)Ib = 60/0◦ Solving, Ia = −5 + j2.5 A; Ib = 5 + j2.5 A VTh = 4Ia + (4 − j4)Ib = 10/0◦ V Short circuit current: (9 + j4)Ia − 1Ib − 4Isc = −60 −1Ia + (9 − j4)Ib − (4 − j4)Isc = 60 −4Ia − (4 − j4)Ib + (8 − j4)Isc = 0 Solving, Isc = 2.07/0◦ ZTh = VTh Isc = 10/0◦ 2.07/0◦ = 4.83 Ω docsity.com 9–32 CHAPTER 9. Sinusoidal Steady State Analysis Alternate calculation for ZTh: ∑ Z = 4 + 1 + 4 − j4 = 9 − j4 Z1 = 4 9 − j4 Z2 = 4 − j4 9 − j4 Z3 = 16 − j16 9 − j4 Za = 4 + j4 + 4 9 − j4 = 56 + j20 9 − j4 Zb = 4 + 4 − j4 9 − j4 = 40 − j20 9 − j4 Za‖Zb = 2640 − j320864 − j384 Z3 + Za‖Zb = 16 − j169 − j4 + 2640 − j320 864 − j384 = 4176 − j1856 864 − j384 = 4.83 Ω docsity.com Problems 9–35 P 9.53 From the solution to Problem 9.52 the phasor-domain circuit is Making two source transformations yields Ig1 = 16 − j12 j2 = −6 − j8 A Ig2 = −14 − j48 −j5 = 9.6 − j2.8 A Y = 1 j2 + 1 10 + 1 −j5 = (0.1 − j0.3) S Z = 1 Y = 1 + j3 Ω Ie = Ig1 + Ig2 = 3.6 − j10.8 A Hence the circuit reduces to Vo = ZIe = (1 + j3)(3.6 − j10.8) = 36/0◦ V ·. . vo(t) = 36 cos 2000t V docsity.com 9–36 CHAPTER 9. Sinusoidal Steady State Analysis P 9.54 The circuit with the mesh currents identified is shown below: The mesh current equations are: −20/− 36.87◦ + j2I1 + 10(I1 − I2) = 0 50/− 106.26◦ + 10(I2 − I1) − j5I2 = 0 In standard form: I1(10 + j2) + I2(−10) = 20/− 36.87◦ I1(−10) + I2(10 − j5) = −50/− 106.26◦ = 50/73.74◦ Solving on a calculator yields: I1 = −6 + j10A; I2 = −9.6 + j10A Thus, Vo = 10(I1 − I2) = 36V and vo(t) = 36 cos 2000tV P 9.55 From the solution to Problem 9.52 the phasor-domain circuit with the right-hand source removed is V′o = 10‖ − j5 j2 + 10‖ − j5(16 − j12) = 18 − j26 V docsity.com Problems 9–37 With the left hand source removed V′′o = 10‖j2 −j5 + 10‖j2(−14 − j48) = 18 + j26 V Vo = V′o + V ′′ o = 18 − j26 + 18 + j26 = 36 V vo(t) = 36 cos 2000t V P 9.56 Write a KCL equation at the top node: Vo −j8 + Vo − 2.4I∆ j4 + Vo 5 − (10 + j10) = 0 The constraint equation is: I∆ = Vo −j8 Solving, Vo = j80 = 80/90◦ V P 9.57 Write node voltage equations: Left Node: V1 40 + V1 − Vo/8 j20 = 0.025/0◦ Right Node: Vo 50 + Vo j25 + 16Io = 0 docsity.com 9–40 CHAPTER 9. Sinusoidal Steady State Analysis P 9.61 jωL = j5000(60 × 10−3) = j300 Ω 1 jωC = −j (5000)(2 × 10−6) = −j100 Ω −400/0◦ + (50 + j300)Ia − 50Ib − 150(Ia − Ib) = 0 (150 − j100)Ib − 50Ia + 150(Ia − Ib) = 0 Solving, Ia = −0.8 − j1.6 A; Ib = −1.6 + j0.8 A Vo = 100Ib = −160 + j80 = 178.89/153.43◦ V vo = 178.89 cos(5000t + 153.43◦) V P 9.62 10/0◦ = (1 − j1)I1 − 1I2 + j1I3 −5/0◦ = −1I1 + (1 + j1)I2 − j1I3 docsity.com Problems 9–41 1 = j1I1 − j1I2 + I3 Solving, I1 = 11 + j10 A; I2 = 11 + j5 A; I3 = 6 A Ia = I3 − 1 = 5 A = 5/0◦ A Ib = I1 − I3 = 5 + j10 A = 11.18/63.43◦ A Ic = I2 − I3 = 5 + j5 A = 7.07/45◦ A Id = I1 − I2 = j5 A = 5/90◦ A P 9.63 Va − (100 − j50) 20 + Va j5 + Va − (140 + j30) 12 + j16 = 0 Solving, Va = 40 + j30 V IZ + (30 + j20) − 140 + j30−j10 + (40 + j30) − (140 + j30) 12 + j16 = 0 Solving, IZ = −30 − j10 A Z = (100 − j50) − (140 + j30) −30 − j10 = 2 + j2 Ω docsity.com 9–42 CHAPTER 9. Sinusoidal Steady State Analysis P 9.64 [a] 1 jωC = −j50 Ω jωL = j120 Ω Ze = 100‖ − j50 = 20 − j40 Ω Ig = 2/0◦ Vg = IgZe = 2(20 − j40) = 40 − j80 V Vo = j120 80 + j80 (40 − j80) = 90 − j30 = 94.87/− 18.43◦ V vo = 94.87 cos(16 × 105t − 18.43◦) V [b] ω = 2πf = 16 × 105; f = 8 × 10 5 π T = 1 f = π 8 × 105 = 1.25π µs ·. . 18.43 360 (1.25π µs) = 201.09 ns ·. . vo lags ig by 201.09 ns P 9.65 jωL = j106(10 × 10−6) = j10 Ω 1 jωC = −j (106)(0.1 × 10−6) = −j10 Ω Va = 50/− 90◦ = −j50 V Vb = 25/90◦ = j25 V (10 − j10)I1 + j10I2 − 10I3 = −j50 docsity.com Problems 9–45 ωM = (200 × 103)(2k × 10−3) = 400k Zr = [ 400k 500 ]2 (300 − j400) = k2(192 − j256) Ω Zin = 200 + j200 + 192k2 − j256k2 |Zin| = [(200 + 192k2)2 + (200 − 256k2)2] 12 d|Zin| dk = 1 2 [(200 + 192k2)2 + (200 − 256k2)2]− 12 × [2(200 + 192k2)384k + 2(200 − 256k2)(−512k)] d|Zin| dk = 0 when 768k(200 + 192k2) − 1024k(200 − 256k2) = 0 ·. . k2 = 0.125; ·. . k = √ 0.125 = 0.3536 [b] Zin (min) = 200 + 192(0.125) + j[200 − 0.125(256)] = 224 + j168 = 280/36.87◦ Ω I1 (max) = 560/0◦ 224 + j168 = 2/− 36.87◦ A ·. . i1 (peak) = 2 A Note — You can test that the k value obtained from setting d|Zin|/dk = 0 leads to a minimum by noting 0 ≤ k ≤ 1. If k = 1, Zin = 392 − j56 = 395.98/− 8.13◦ Ω Thus, |Zin|k=1 > |Zin|k=√0.125 If k = 0, Zin = 200 + j200 = 282.84/45◦ Ω Thus, |Zin|k=0 > |Zin|k=√0.125 P 9.69 jωL1 = j50 Ω jωL2 = j32 Ω docsity.com 9–46 CHAPTER 9. Sinusoidal Steady State Analysis 1 jωC = −j20 Ω jωM = j(4 × 103)k √ (12.5)(8) × 10−3 = j40k Ω Z22 = 5 + j32 − j20 = 5 + j12 Ω Z∗22 = 5 − j12 Ω Zr = [ 40k |5 + j12| ]2 (5 − j12) = 47.337k2 − j113.609k2 Zab = 20 + j50 + 47.337k2 − j113.609k2 = (20 + 47.337k2) + j(50 − 113.609k2) Zab is resistive when 50 − 113.609k2 = 0 or k2 = 0.44 so k = 0.66 ·. . Zab = 20 + (47.337)(0.44) = 40.83 Ω P 9.70 [a] jωLL = j100 Ω jωL2 = j500 Ω Z22 = 300 + 500 + j100 + j500 = 800 + j600 Ω Z∗22 = 800 − j600 Ω ωM = 270 Ω Zr = ( 270 1000 )2 [800 − j600] = 58.32 − j43.74 Ω [b] Zab = R1 + jωL1 + Zr = 41.68 + j180 + 58.32 − j43.74 = 100 + j136.26 Ω P 9.71 ZL = V3 I3 = 80/60◦ Ω docsity.com Problems 9–47 V2 10 = V3 1 ; 10I2 = 1I3 V1 8 = −V2 1 ; 8I1 = −1I2 Zab = V1 I1 Substituting, Zab = V1 I1 = −8V2 −I2/8 = 82V2 I2 = 82(10V3) I3/10 = (8)2(10)2V3 I3 = (8)2(10)2ZL = 512, 000/60◦ Ω P 9.72 In Eq. 9.69 replace ω2M2 with k2ω2L1L2 and then write Xab as Xab = ωL1 − k 2ω2L1L2(ωL2 + ωLL) R222 + (ωL2 + ωLL)2 = ωL1 { 1 − k 2ωL2(ωL2 + ωLL) R222 + (ωL2 + ωLL)2 } For Xab to be negative requires R222 + (ωL2 + ωLL) 2 < k2ωL2(ωL2 + ωLL) or R222 + (ωL2 + ωLL) 2 − k2ωL2(ωL2 + ωLL) < 0 which reduces to R222 + ω 2L22(1 − k2) + ωL2ωLL(2 − k2) + ω2L2L < 0 But k ≤ 1 hence it is impossible to satisfy the inequality. Therefore Xab can never be negative if XL is an inductive reactance. docsity.com 9–50 CHAPTER 9. Sinusoidal Steady State Analysis P 9.75 [a] I = 240 24 + 240 j32 = (10 − j7.5) A Vs = 240/0◦ + (0.1 + j0.8)(10 − j7.5) = 247 + j7.25 = 247.11/1.68◦ V [b] Use the capacitor to eliminate the j component of I, therefore Ic = j7.5 A, Zc = 240 j7.5 = −j32 Ω Vs = 240 + (0.1 + j0.8)10 = 241 + j8 = 241.13/1.90◦ V [c] Let Ic denote the magnitude of the current in the capacitor branch. Then I = (10 − j7.5 + jIc) = 10 + j(Ic − 7.5) A Vs = 240/α = 240 + (0.1 + j0.8)[10 + j(Ic − 7.5)] = (247 − 0.8Ic) + j(7.25 + 0.1Ic) It follows that 240 cos α = (247 − 0.8Ic) and 240 sin α = (7.25 + 0.1Ic) Now square each term and then add to generate the quadratic equation I2c − 605.77Ic + 5325.48 = 0; Ic = 302.88 ± 293.96 Therefore Ic = 8.92 A (smallest value) and Zc = 240/j8.92 = −j26.90 Ω. P 9.76 The phasor domain equivalent circuit is Vo = Vm/0◦ 2 − IRx; I = Vm/0 ◦ Rx − jXC As Rx varies from 0 to ∞, the amplitude of vo remains constant and its phase angle decreases from 0◦ to −180◦, as shown in the following phasor diagram: docsity.com Problems 9–51 P 9.77 [a] I = 120 7.5 + 120 j12 = 16 − j10 A V = (0.15 + j6)(16 − j10) = 62.4 + j94.5 = 113.24/56.56◦ V Vs = 120/0◦ + V = 205.43/27.39◦ V [b] [c] I = 120 2.5 + 120 j4 = 48 − j30 A V = (0.15 + j6)(48 − j30) = 339.73/56.56◦ V Vs = 120 + V = 418.02/42.7◦ V The amplitude of Vs must be increased from 205.43 V to 418.02 V (more than doubled) to maintain the load voltage at 120 V. docsity.com 9–52 CHAPTER 9. Sinusoidal Steady State Analysis [d] I = 120 2.5 + 120 j4 + 120 −j2 = 48 + j30 A V = (0.15 + j6)(48 + j30) = 339.73/120.57◦ V Vs = 120 + V = 297.23/100.23◦ V The amplitude of Vs must be increased from 205.43 V to 297.23 V to maintain the load voltage at 120 V. P 9.78 Vg = 4/0◦ V; 1 jωC = −j20 kΩ Let Va = voltage across the capacitor, positive at upper terminal Then: Va − 4/0◦ 20,000 + Va −j20,000 + Va 20,000 = 0; ·. . Va = (1.6 − j0.8) V 0 − Va 20,000 + 0 − Vo 10,000 = 0; Vo = −Va2 ·. . Vo = −0.8 + j0.4 = 0.89/153.43◦ V vo = 0.89 cos(200t + 153.43◦) V P 9.79 [a] Va − 4/0◦ 20,000 + jωCoVa + Va 20,000 = 0 Va = 4 2 + j20,000ωCo Vo = −Va2 (see solution to Prob. 9.78) docsity.com Problems 9–55 [b] Vo = 6(1 − j1) 1 + j1 = −j6 V vo = 6 cos(105t − 90◦) V P 9.83 [a] Because the op-amps are ideal Iin = Io, thus Zab = Vab Iin = Vab Io ; Io = Vab − Vo Z Vo1 = Vab; Vo2 = − ( R2 R1 ) Vo1 = −KVo1 = −KVab Vo = Vo2 = −KVab ·. . Io = Vab − (−KVab) Z = (1 + K)Vab Z ·. . Zab = Vab(1 + K)Vab Z = Z (1 + K) [b] Z = 1 jωC ; Zab = 1 jωC(1 + K) ; ·. . Cab = C(1 + K) P 9.84 [a] I1 = 120 24 + 240 8.4 + j6.3 = 23.29 − j13.71 = 27.02/−30.5◦ A I2 = 120 12 − 120 24 = 5/0◦ A I3 = 120 12 + 240 8.4 + j6 = 28.29 − j13.71 = 31.44/−25.87◦ A I4 = 120 24 = 5/0◦ A; I5 = 120 12 = 10/0◦ A I6 = 240 8.4 + j6.3 = 18.29 − j13.71 = 22.86/−36.87◦ A docsity.com 9–56 CHAPTER 9. Sinusoidal Steady State Analysis [b] I1 = 0 I3 = 15 A I5 = 10 A I2 = 10 + 5 = 15 A I4 = −5 A I6 = 5 A [c] The clock and television set were fed from the uninterrupted side of the circuit, that is, the 12 Ω load includes the clock and the TV set. [d] No, the motor current drops to 5 A, well below its normal running value of 22.86 A. [e] After fuse A opens, the current in fuse B is only 15 A. P 9.85 [a] The circuit is redrawn, with mesh currents identified: The mesh current equations are: 120/0◦ = 23Ia − 2Ib − 20Ic 120/0◦ = −2Ia + 43Ib − 40Ic 0 = −20Ia − 40Ib + 70Ic Solving, Ia = 24/0◦ A Ib = 21.96/0◦ A Ic = 19.40/0◦ A The branch currents are: I1 = Ia = 24/0◦ A I2 = Ia − Ib = 2.04/0◦ A I3 = Ib = 21.96/0◦ A I4 = Ic = 19.40/0◦ A I5 = Ia − Ic = 4.6/0◦ A I6 = Ib − Ic = 2.55/0◦ A docsity.com Problems 9–57 [b] Let N1 be the number of turns on the primary winding; because the secondary winding is center-tapped, let 2N2 be the total turns on the secondary. From Fig. 9.58, 13,200 N1 = 240 2N2 or N2 N1 = 1 110 The ampere turn balance requires N1Ip = N2I1 + N2I3 Therefore, Ip = N2 N1 (I1 + I3) = 1 110 (24 + 21.96) = 0.42/0◦ A Check voltages — V4 = 10I4 = 194/0◦ V V5 = 20I5 = 92/0◦ V V6 = 40I6 = 102/0◦ V All of these voltages are low for a reasonable distribution circuit. P 9.86 [a] The three mesh current equations are 120/0◦ = 23Ia − 2Ib − 20Ic 120/0◦ = −2Ia + 23Ib − 20Ic 0 = −20Ia − 20Ib + 50Ic Solving, Ia = 24/0◦ A; Ib = 24/0◦ A; Ic = 19.2/0◦ A ·. . I2 = Ia − Ib = 0 A [b] Ip = N2 N1 (I1 + I3) = N2 N1 (Ia + Ib = 1 110 (24 + 24) = 0.436/0◦ A docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved