Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Sinusoidal Steady State Analysis - Introduction to Electrical Engineering | EE 221, Assignments of Electrical and Electronics Engineering

Material Type: Assignment; Class: Intro Electrical Engineering; Subject: Electrical Engineering; University: West Virginia University; Term: Unknown 1989;

Typology: Assignments

Pre 2010

Uploaded on 07/30/2009

koofers-user-bs4
koofers-user-bs4 🇺🇸

10 documents

1 / 6

Toggle sidebar

Related documents


Partial preview of the text

Download Sinusoidal Steady State Analysis - Introduction to Electrical Engineering | EE 221 and more Assignments Electrical and Electronics Engineering in PDF only on Docsity! Examples - Chapter 10 - Sinusoidal Steady-State Analysis 1 Chapter 10, Problem 2. (a) If -10 cos ωt + 4 sin ωt = A cos (ωt + φ), where A > 0 and -180° < φ ≤ 180°, find A and φ. (b) If 200 cos (5t +130°) = F cos 5t + G sin 5t, find F and G. (c) Find three values of t, 0 ≤ t ≤ 1 s, at which i(t) = 5 cos 10t - 3 sin 10t = 0. (d) In what time interval between t = 0 and t = 10 ms is 10 cos 100πt ≥ 12 sin 100πt? Chapter 10, Solution 2. (a) (b) (c) (d) 10cos 4sin ACos ( ), A 0, 180 180 A 116 10.770, A cos 10, A sin 4 tan 0.4, 3 quad 21.80 201.8 , too large 201.8 360 158.20 d t t wt− ω + ω + +Φ > − ° < Φ ≤ ° = = Φ = − Φ = − ∴ Φ = ∴Φ = ° = ° ∴Φ = °− ° = − ° 200cos (5 130 ) Fcos5 G sin 5 F 200cos130 128.56 G 200sin130 153.21 + ° = + ∴ = ° = − = − ° = − ° t t t sin10 5( ) 5cos10 3sin10 0, 0 1 , 10 1.0304, cos10 3 0.10304 ; also, 10 1.0304 , 0.4172 ; 2 : 0.7314 = − = ≤ ≤ ∴ = = = = + π = π ti t t t t s t t t s t t s s 0 10ms, 10cos100 12sin100 ; let 10cos100 t =12sin100 t 10tan100 t = , 100 0.6947 2.211ms 0 2.211ms 12 < < π ≥ π π π ∴ π π = ∴ = ∴ < < t t t t t t = Examples - Chapter 10 - Sinusoidal Steady-State Analysis 2 Chapter 10, Problem 6. Compare the following pairs of wave forms, and determine which one is leading: (a) -33 sin (8t - 9°) and 12 cos (8t - 1°) (b) 15 cos (1000t + 66°) and -2 cos (1000t + 450°). (c) sin (t - 13°) and cos (t - 90°). (d) sin t and cos (t -90°). Chapter 10, Solution 6. (a) -33 sin(8t – 9o) → -33∠(-9-90)o = 33∠81o 12 cos (8t – 1o) → 12∠-1o (b) 15 cos (1000t + 66o) → 15 ∠ 66o -2 cos (1000t + 450o) → -2 ∠ 450o = -2 ∠90o = 2 ∠ 270o (c) sin (t – 13o) → 1∠-103o cos (t – 90o) → 1 ∠ -90o (d) sin t → 1 ∠ -90o cos (t – 90o) → 1 ∠ -90o These two waveforms are in phase. Neither leads the other. 33∠81o 12∠-1o -33 sin(8t – 9o) leads 12 cos (8t – 1o) by 81 – (-1) = 82o. 15∠66o 2∠270o 15 cos (1000t + 66o) leads -2 cos (1000t + 450o) by 66 – -90 = 156o. 1∠-103o 1 ∠ -90o cos (t – 90o) leads sin (t – 13o) by 66 – -90 = 156o. Examples - Chapter 10 - Sinusoidal Steady-State Analysis 3 Chapter 10, Problem 18. Assume that the op-amp in Fig. 10.50 is ideal (Ri = ∞ , Ro = 0, and A = ∞ ). Note also that the integrator input has two signals applied to it, -Vm cos ωt and vout. If the product R1C1 is set equal to the ratio L/R in the circuit of Fig. 10.4, show that vout equals the voltage across R in Fig. 10.4. Chapter 10, Solution 18. 1 1 1 1 1 1 1 1 LR , R 0, A , ideal, R C R V cos , R R ( V cos ) C R LV cos R C R For RL circuit, V cos L R LV cos R By c i o m out upper lower c upper lower out m out m out out out out R m r m R R t vi i ii i i v t v t v v v v d vt v dt t v v ω ω ω ω ω = ∞ = = ∞ = = − = ′∴ = + = − = − ′ ′∴ = + = +  = +     ′∴ = + omparison, R outv v= Examples - Chapter 10 - Sinusoidal Steady-State Analysis 4 Chapter 10, Problem 30. Let ω= 4 krad/s, and determine the instantaneous value of xi at 1mst = if Ix equals: (a) 5 80 A∠− ° (b) 4 1.5j− + A Express in polar form the phasor voltage Vx if ( )xv t equals: (c) 50 sin (250t - 40°) (d) 20cos108 30sin108t t− V (e) 33cos (80 50 ) 41cos (80 75 ) Vt t− ° + − ° Chapter 10, Solution 30. 4000, 1mstω = = and ω t = 4 rad (a) (b) (c) (d) (e) rad I 5 80 A 4cos (4 80 ) 4.294A = ∠− ° ∴ = − ° = − x xi rad I 4 1.5 4.272 159.44 A 4.272cos (4 159.44 ) 3.750 A− = − + = ∠ ° ∴ = + ° = x x j i ( ) 50sin (250 40 ) 50cos (250 130 ) V 50 103 V = − ° = − ° → = ∠− ° x x v t t t 20cos108 30sin108 20 30 36.06 56.31 V = − → + = ∠ ° xv t t j 33cos (80 50 ) 41cos (80 75 )! 33 50 41 75 72.27 63.87 V = − ° + − ° → ∠− °+ ∠− ° = ∠− ° xv t t 5 Examples - Chapter 10 - Sinusoidal Steady-State Analysis 9 Chapter 10, Problem 50. Two admittances, Y1 = 3 +j4 mS and Y2 = 5 + j2 mS, are in parallel, and a third admittance, Y3 = 2 - j4 mS, is in series with the parallel combination. If a current I1 = 0.1 A is flowing through Y1, find the magnitude of the voltage across (a) Y1; (b) Y2; (c) Y3; (d) the entire network. Chapter 10, Solution 50. (a) 11 13 1 I 0.1 30V 20 23.13 V 20V Y (3 4)10− ∠ ° = = = ∠− °∴ = + j (b) 2 1 2V V V 20V= ∴ = (c) (d) 3 2 2 2 3 1 2 3 3 33 3 I Y V (5 2)10 20 23.13 0.10770 1.3286 A I I I 0.1 30 0.10770 1.3286 0.2 13.740 A I 0.2 13.740V 44.72 77.18 V V 44.72V Y (2 4)10 j j − − = = + × ∠− ° = ∠− ° ∴ = + = ∠ °+ ∠− ° = ∠ ° ∠ ° ∴ = = = ∠ ° ∴ = − 1 3V V V 20 23.13 44.72 77.18 45.60 51.62 V 45.60V = + + ∠− °+ ∠ ° = ∠ ° ∴ = in in = Examples - Chapter 10 - Sinusoidal Steady-State Analysis 10 Chapter 10, Problem 54. Use phasors and mesh analysis on the circuit of Fig. 10.63 to find IB . Chapter 10, Solution 54. 3I 5(I I ) 0 2I 5I 0 3(I 5) 5(I I ) 6(I 10) 0 5I (9 5) I 60 15 0 5 60 15 9 5 75 300I 2 5 15 18 5 9 5 13.198 154.23 A B B D B D D D B D B D B j j j j j j j j j j j j j j j j j − − = ∴− + = + − − + + = ∴ + − = − − − − − − + = = − − − = ∠ ° -2jIB Examples - Chapter 10 - Sinusoidal Steady-State Analysis 11 Chapter 10, Problem 67. Find the input admittance of the circuit shown in Fig. 10.74, and represent it as the parallel combination of a resistance R and an inductance L , giving values for R and L if ù =1 rad/s. Chapter 10, Solution 67. Note: There is no dependent but one independent source. Therefore, find the input impedance/admittance through an experiment, .e.g., apply an input current of 1 ∠0o A. V 210 0.5V 1V (1 ) 2 11 2 V 1Z 1 2 1 At 1, Z 1 1 2 1 1Y 0.5 0.5 1 1 L L in in in in in j j j j j j j j j j j j j j ω ω ω ω ω ω ω ω ω = ∴ = ∴ = + + = + + ∴ = = + + = = − + = + ∴ = = + + R = 500 mΩ, L = 500 mH. so Yin = ( )12 2 −+ ωω ω j = jω1∠ o, Examples - Chapter 10 - Sinusoidal Steady-State Analysis 12 Chapter 10, Problem 82. In the circuit of Fig. 10.85, find values for (a) I1, I2, and I3.(b) Show Vs, I1, I2, and I3 on a phasor diagram (scales of 50 V/in and 2 A/in work fine). (c) Find Is graphically and give its amplitude and phase angle. Chapter 10, Solution 82. (a) (b) (c) 1 2 3 120I 3 30 A 40 30 120I 2.058 30.96 A 50 30 120I 2.4 53.13 A 30 40 j j = = ∠− ° ∠ ° = = ∠ ° − = = ∠− ° + 1 2 3I I I I 6.265 22.14 A s = + + = ∠− °
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved