Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Sinusoidal Steady State Power Calculations: Assessment Problems, Exercises of Electrical Circuit Analysis

This is solution manual for problems related Electrical Circuit Analysis course. It was provided at National Institute of Industrial Engineering by Prof. Sanjay Das. It includes: Sinusoidal, Steady, State, Power, Calculations, Phasor, Domain, Thévenin, Equivalent, Circuit

Typology: Exercises

2011/2012

Uploaded on 07/23/2012

gannak
gannak 🇮🇳

4.6

(24)

72 documents

1 / 54

Toggle sidebar

Related documents


Partial preview of the text

Download Sinusoidal Steady State Power Calculations: Assessment Problems and more Exercises Electrical Circuit Analysis in PDF only on Docsity! 10 Sinusoidal Steady State Power Calculations Assessment Problems AP 10.1 [a] V = 100/− 45◦ V, I = 20/15◦ A Therefore P = 1 2 (100)(20) cos[−45 − (15)] = 500 W, A → B Q = 1000 sin −60◦ = −866.03 VAR, B → A [b] V = 100/− 45◦, I = 20/165◦ P = 1000 cos(−210◦) = −866.03 W, B → A Q = 1000 sin(−210◦) = 500 VAR, A → B [c] V = 100/− 45◦, I = 20/− 105◦ P = 1000 cos(60◦) = 500 W, A → B Q = 1000 sin(60◦) = 866.03 VAR, A → B [d] V = 100/0◦, I = 20/120◦ P = 1000 cos(−120◦) = −500 W, B → A Q = 1000 sin(−120◦) = −866.03 VAR, B → A AP 10.2 pf = cos(θv − θi) = cos[15 − (75)] = cos(−60◦) = 0.5 leading rf = sin(θv − θi) = sin(−60◦) = −0.866 10–1 docsity.com 10–2 CHAPTER 10. Sinusoidal Steady State Power Calculations AP 10.3 From Ex. 9.4 Ieff = Iρ√ 3 = 0.18√ 3 A P = I2effR = (0.0324 3 ) (5000) = 54 W AP 10.4 [a] Z = (39 + j26)‖(−j52) = 48 − j20 = 52/− 22.62◦ Ω Therefore I = 250/0◦ 48 − j20 + 1 + j4 = 4.85/18.08 ◦ A(rms) VL = ZI = (52/− 22.62◦)(4.85/18.08◦) = 252.20/− 4.54◦ V(rms) IL = VL 39 + j26 = 5.38/− 38.23◦ A(rms) [b] SL = VLI∗L = (252.20/− 4.54◦)(5.38/+ 38.23◦) = 1357/33.69◦ = (1129.09 + j752.73) VA PL = 1129.09 W; QL = 752.73 VAR [c] P = |I|21 = (4.85)2 · 1 = 23.52 W; Q = |I|24 = 94.09 VAR [d] Sg(delivering) = 250I∗ = (1152.62 − j376.36) VA Therefore the source is delivering 1152.62 W and absorbing 376.36 magnetizing VAR. [e] Qcap = |VL|2 −52 = (252.20)2 −52 = −1223.18 VAR Therefore the capacitor is delivering 1223.18 magnetizing VAR. Check: 94.09 + 752.73 + 376.36 = 1223.18 VAR and 1129.09 + 23.52 = 1152.62 W AP 10.5 Series circuit derivation: S = 250I∗ = (40,000 − j30,000) Therefore I∗ = 160 − j120 = 200/− 36.87◦ A(rms) I = 200/36.87◦ A(rms) Z = V I = 250 200/36.87◦ = 1.25/− 36.87◦ = (1 − j0.75) Ω Therefore R = 1 Ω, XC = −0.75 Ω docsity.com Problems 10–5 [b] I1 − I2 = 0.4 − j0.32 A P375 = 1 2 |I1 − I2|2(375) = 49.20 W [c] Pg = 1 2 (248)(0.8) = 99.20 W ∑ Pabs = 50 + 49.2 = 99.20 W (checks) AP 10.10 [a] VTh = 210/0◦ V; V2 = 14V1; I1 = 1 4I2 Short circuit equations: 840 = 80I1 − 20I2 + V1 0 = 20(I2 − I1) − V2 ·. . I2 = 14 A; RTh = 21014 = 15 Ω [b] Pmax = (210 30 )2 15 = 735 W AP 10.11 [a] VTh = −4(146/0◦) = −584/0◦ V(rms) = 584/180◦ V(rms) V2 = 4V1; I1 = −4I2 Short circuit equations: 146/0◦ = 80I1 − 20I2 + V1 0 = 20(I2 − I1) + V2 ·. . I2 = −146/365 = −0.40 A; RTh = −584−0.4 = 1460 Ω [b] P = (−584 2920 )2 1460 = 58.40 W docsity.com 10–6 CHAPTER 10. Sinusoidal Steady State Power Calculations Problems P 10.1 [a] P = 1 2 (100)(10) cos(50 − 15) = 500 cos 35◦ = 409.58 W (abs) Q = 500 sin 35◦ = 286.79 VAR (abs) [b] P = 1 2 (40)(20) cos(−15 − 60) = 400 cos(−75◦) = 103.53 W (abs) Q = 400 sin(−75◦) = −386.37 VAR (del) [c] P = 1 2 (400)(10) cos(30 − 150) = 2000 cos(−120◦) = −1000 W (del) Q = 2000 sin(−120◦) = −1732.05 VAR (del) [d] P = 1 2 (200)(5) cos(160 − 40) = 500 cos(120◦) = −250 W (del) Q = 500 sin(120◦) = 433.01 VAR (abs) P 10.2 p = P + P cos 2ωt − Q sin 2ωt; dp dt = −2ωP sin 2ωt − 2ωQ cos 2ωt dp dt = 0 when − 2ωP sin 2ωt = 2ωQ cos 2ωt or tan 2ωt = −Q P cos 2ωt = P√ P 2 + Q2 ; sin 2ωt = − Q√ P 2 + Q2 Let θ = tan−1(−Q/P ), then p is maximum when 2ωt = θ and p is minimum when 2ωt = (θ + π). Therefore pmax = P + P · P√ P 2 + Q2 − Q(−Q)√ P 2 + Q2 = P + √ P 2 + Q2 and pmin = P − P · P√ P 2 + Q2 − Q · Q√ P 2 + Q2 = P − √ P 2 + Q2 docsity.com Problems 10–7 P 10.3 [a] hair dryer = 600 W vacuum = 630 W sun lamp = 279 W air conditioner = 860 W television = 240 W ∑ P = 2609 W Therefore Ieff = 2609 120 = 21.74 A Yes, the breaker will trip. [b] ∑ P = 2609 − 909 = 1700 W; Ieff = 1700120 = 14.17 A Yes, the breaker will not trip if the current is reduced to 14.17 A. P 10.4 [a] Ieff = 40/115 ∼= 0.35 A; [b] Ieff = 130/115 ∼= 1.13 A P 10.5 Wdc = V 2dc R T ; Ws = ∫ to+T to v2s R dt ·. . V 2 dc R T = ∫ to+T to v2s R dt V 2dc = 1 T ∫ to+T to v2s dt Vdc = √ 1 T ∫ to+T to v2s dt = Vrms = Veff P 10.6 [a] Area under one cycle of v2g : A = (52)(2)(30 × 10−6) + 22(2)(37.5 × 10−6) = 1800 × 10−6 Mean value of v2g : M.V. = A 200 × 10−6 = 1800 × 10−6 200 × 10−6 = 9 ·. . Vrms = √ 9 = 3 V(rms) [b] P = V 2rms R = 32 2.25 = 4 W P 10.7 i(t) = 200t 0 ≤ t ≤ 75 ms i(t) = 60 − 600t 75 ms ≤ t ≤ 100 ms Irms = √ 1 0.1 {∫ 0.075 0 (200)2t2 dt + ∫ 0.1 0.075 (60 − 600t)2 dt } = √ 10(5.625) + 10(1.875) = √ 75 = 8.66 A(rms) docsity.com 10–10 CHAPTER 10. Sinusoidal Steady State Power Calculations |Ig|2RL = 2500 ·. . RL = 10 Ω |Ig|2XL = −5000 ·. . XL = −20 Ω Thus, |Z| = √ (30)2 + (X − 20)2 |Ig| = 500√ 900 + (X − 20)2 ·. . 900 + (X − 20)2 = 25 × 10 4 250 = 1000 Solving, (X − 20) = ±10. Thus, X = 10 Ω or X = 30 Ω [b] If X = 30 Ω: Ig = 500 30 + j10 = 15 − j5 A Sg = −500I∗g = −7500 − j2500 VA Thus, the voltage source is delivering 7500 W and 2500 magnetizing vars. Qj30 = |Ig|2X = 250(30) = 7500 VAR Therefore the line reactance is absorbing 7500 magnetizing vars. Q−j20 = |Ig|2XL = 250(−20) = −5000 VAR Therefore the load reactance is generating 5000 magnetizing vars.∑ Qgen = 7500 VAR = ∑ Qabs If X = 10 Ω: Ig = 500 30 − j10 = 15 + j5 A Sg = −500I∗g = −7500 + j2500 VA Thus, the voltage source is delivering 7500 W and absorbing 2500 magnetizing vars. Qj10 = |Ig|2(10) = 250(10) = 2500 VAR Therefore the line reactance is absorbing 2500 magnetizing vars. The load continues to generate 5000 magnetizing vars.∑ Qgen = 5000 VAR = ∑ Qabs docsity.com Problems 10–11 P 10.13 Zf = −j10,000‖20,000 = 4000 − j8000 Ω Zi = 2000 − j2000 Ω ·. . Zf Zi = 4000 − j8000 2000 − j2000 = 3 − j1 Vo = −Zf Zi Vg; Vg = 1/0◦ V Vo = (3 − j1)(1) = 3 − j1 = 3.16/− 18.43◦ V P = 1 2 V 2m R = 1 2 (10) 1000 = 5 × 10−3 = 5 mW P 10.14 [a] P = 1 2 (240)2 480 = 60 W − 1 ωC = −9 × 106 (5000)(5) = −360 Ω Q = 1 2 (240)2 (−360) = −80 VAR pmax = P + √ P 2 + Q2 = 60 + √ (60)2 + (80)2 = 160 W(del) [b] pmin = 60 − √ 602 + 802 = −40 W(abs) [c] P = 60 W from (a) [d] Q = −80 VAR from (a) [e] generate, because Q < 0 [f] pf = cos(θv − θi) I = 240 480 + 240 −j360 = 0.5 + j0.67 = 0.83/53.13 ◦ A ·. . pf = cos(0 − 53.13◦) = 0.6 leading [g] rf = sin(−53.13◦) = −0.8 docsity.com 10–12 CHAPTER 10. Sinusoidal Steady State Power Calculations P 10.15 [a] The mesh equations are: (10 − j20)I1 + (j20)I2 = 170 (j20)I1 + (12 − j4)I2 = 0 Solving, I1 = 4 + j1 A; I2 = 3.5 − j5.5 A S = −VgI∗1 = −(170)(4 − j1) = −680 + j170 VA [b] Source is delivering 680 W. [c] Source is absorbing 170 magnetizing VAR. [d] P10Ω = ( √ 17)2(10) = 170 W P12Ω = ( √ 42.5)2(12) = 510 W (I1 − I2) = 0.5 + j6.5 A Q−j20Ω = ( √ 42.5)2(20) = −850 VAR |I1 − I2| = √ 42.5 Qj16Ω = ( √ 42.5)2(16) = 680 VAR [e] ∑ Pdel = 680 W ∑ Pdiss = 170 + 510 = 680 W ·. . ∑Pdel = ∑Pdiss = 680 W [f] ∑ Qabs = 170 + 680 = 850 VAR ∑ Qdev = 850 VAR ·. . ∑ mag VAR dev = ∑ mag VAR abs = 850 docsity.com Problems 10–15 P 10.20 ST = 4500 − j 45000.96 (0.28) = 4500 − j1312.5 VA S1 = 2700 0.8 (0.8 + j0.6) = 2700 + j2025 VA S2 = ST − S1 = 1800 − j3337.5 = 3791.95/− 61.66◦ VA pf = cos(−61.66◦) = 0.4747 leading P 10.21 2400I∗1 = 60,000 + j40,000 I∗1 = 25 + j16.67; ·. . I1 = 25 − j16.67 A(rms) 2400I∗2 = 20,000 − j10,000 I∗2 = 8.33 − j4, 167; ·. . I2 = 8.33 + j4.167 A(rms) I3 = 2400/0◦ 144 = 16.67 + j0 A; I4 = 2400/0◦ j96 = 0 − j25 A Ig = I1 + I2 + I3 + I4 = 50 − j37.5 A Vg = 2400 + (j4)(50 − j37.5) = 2550 + j200 = 2557.83/4.48◦ V(rms) P 10.22 [a] S1 = 60,000 − j70,000 VA S2 = |VL|2 Z∗2 = (2500)2 24 − j7 = 240,000 + j70,000 VA S1 + S2 = 300,000 VA 2500I∗L = 300,000; ·. . IL = 120/0◦ A(rms) Vg = VL + IL(0.1 + j1) = 2500 + (120)(0.1 + j1) = 2512 + j120 = 2514.86/2.735◦ V(rms) docsity.com 10–16 CHAPTER 10. Sinusoidal Steady State Power Calculations [b] T = 1 f = 1 60 = 16.67 ms 2.735◦ 360◦ = t 16.67 ms ; ·. . t = 126.62 µs [c] VL lags Vg by 2.735◦ or 126.62 µs P 10.23 [a] From the solution to Problem 9.56 we have: Vo = j80 = 80/90◦ V Sg = −12VoI ∗ g = − 1 2 (j80)(10 − j10) = −400 − j400 VA Therefore, the independent current source is delivering 400 W and 400 magnetizing vars. I1 = Vo 5 = j16 A P5Ω = 1 2 (16)2(5) = 640 W Therefore, the 8 Ω resistor is absorbing 640 W. I∆ = Vo −j8 = −10 A Qcap = 1 2 (10)2(−8) = −400 VAR Therefore, the −j8 Ω capacitor is developing 400 magnetizing vars. 2.4I∆ = −24 V I2 = Vo − 2.4I∆ j4 = j80 + 24 j4 = 20 − j6 A = 20.88/− 16.7◦ A docsity.com Problems 10–17 Qj4 = 1 2 |I2|2(4) = 872 VAR Therefore, the j4 Ω inductor is absorbing 872 magnetizing vars. Sd.s. = 12(2.4I∆)I ∗ 2 = 1 2(−24)(20 + j6) = −240 − j72 VA Thus the dependent source is delivering 240 W and 72 magnetizing vars. [b] ∑ Pgen = 400 + 240 = 640 W = ∑ Pabs [c] ∑ Qgen = 400 + 400 + 72 = 872 VAR = ∑ Qabs P 10.24 [a] From the solution to Problem 9.58 we have Ia = −j10 A; Ib = −20 + j10 A; Io = 20 − j20 A S100V = −12(100)I ∗ a = −50(j10) = −j500 VA Thus, the 100 V source is developing 500 magnetizing vars. Sj100V = −12(j100)I∗b = −j50(−20 − j10) = −500 + j1000 VA Thus, the j100 V source is developing 500 W and absorbing 1000 magnetizing vars. P10Ω = 1 2 |Ia|2(10) = 500 W Thus the 10 Ω resistor is absorbing 500 W. Q−j10Ω = 1 2 |Ib|2(−10) = −2500 VAR Thus the −j10 Ω capacitor is developing 2500 magnetizing vars. Qj5Ω = 1 2 |Io|2(5) = 2000 VAR Thus the j5 Ω inductor is absorbing 2000 magnetizing vars. [b] ∑ Pdev = 500 W = ∑ Pabs docsity.com 10–20 CHAPTER 10. Sinusoidal Steady State Power Calculations I2 = 5000 − j2000 125 = 40 − j16 A (rms) I3 = 10,000 + j0 250 = 40 + j0 A (rms) ·. . Ig1 = I1 + I3 = 72 − j8 A (rms) In = I1 − I2 = −8 + j8 A (rms) Ig2 = I2 + I3 = 80 − j16 A(rms) Vg1 = 0.05Ig1 + 125 + 0.15In = 127.4 + j0.8 V(rms) Vg2 = −0.15In + 125 + 0.05Ig2 = 130.2 − j2 V(rms) Sg1 = [(127.4 + j0.8)(72 + j8)] = [9166.4 + j1076.8] VA Sg2 = [(130.2 − j2)(80 + j16)] = [10,448 + j1923.2] VA Note: Both sources are delivering average power and magnetizing VAR to the circuit. [b] P0.05 = |Ig1|2(0.05) = 262.4 W P0.15 = |In|2(0.15) = 19.2 W P0.05 = |Ig2|2(0.05) = 332.8 W∑ Pdis = 262.4 + 19.2 + 332.8 + 4000 + 5000 + 10,000 = 19,614.4 W ∑ Pdev = 9166.4 + 10,448 = 19,614.4 W = ∑ Pdis ∑ Qabs = 1000 + 2000 = 3000 VAR ∑ Qdel = 1076.8 + 1923.2 = 3000 VAR = ∑ Qabs P 10.29 [a] Let VL = Vm/0◦: SL = 600(0.8 + j0.6) = 480 + j360 VA I∗ = 480 Vm + j 360 Vm ; I = 480 Vm − j 360 Vm docsity.com Problems 10–21 120/θ = Vm + (480 Vm − j 360 Vm ) (1 + j2) 120Vm/θ = V 2m + (480 − j360)(1 + j2) = V 2m + 1200 + j600 120Vm cos θ = V 2m + 1200; 120Vm sin θ = 600 (120)2V 2m = (V 2 m + 1200) 2 + 6002 14,400V 2m = V 4 m + 2400V 2 m + 18 × 105 or V 4m − 12,000V 2m + 18 × 105 = 0 Solving, Vm = 108.85 V and Vm = 12.326 V If Vm = 108.85 V: sin θ = 600 (108.85)(120) = 0.045935; ·. . θ = 2.63◦ If Vm = 12.326 V: sin θ = 600 (12.326)(120) = 0.405647; ·. . θ = 23.93◦ [b] P 10.30 [a] SL = 20,000(0.85 + j0.53) = 17,000 + j10,535.65 VA 125I∗L = (17,000 + j10,535.65); I ∗ L = 136 + j84.29 A(rms) ·. . IL = 136 − j84.29 A(rms) Vs = 125 + (136 − j84.29)(0.01 + j0.08) = 133.10 + j10.04 = 133.48/4.31◦ V(rms) |Vs| = 133.48 V(rms) [b] P = |I|2(0.01) = (160)2(0.01) = 256 W docsity.com 10–22 CHAPTER 10. Sinusoidal Steady State Power Calculations [c] (125)2 XC = −10,535.65; XC = −1.483 Ω − 1 ωC = −1.48; C = 1 (1.48)(120π) = 1788.59 µF [d] I = 136 + j0 A(rms) Vs = 125 + 136(0.01 + j0.08) = 126.36 + j10.88 = 126.83/4.92◦ V(rms) |Vs| = 126.83 V(rms) [e] P = (136)2(0.01) = 184.96 W P 10.31 IL = 153,600 − j115,200 4800 = 32 − j24 A(rms) IC = 4800 −jXC = j 4800 XC = jIC I = 32 − j24 + jIC = 32 + j(IC − 24) Vs = 4800 + (2 + j10)[32 + j(IC − 24)] = (5104 − 10IC) + j(272 + 2IC) |Vs|2 = (5104 − 10IC)2 + (272 + 2IC)2 = (4800)2 ·. . 104I2C − 100,992IC + 3,084,800 = 0 Solving, IC = 31.57 A(rms); IC = 939.51 A(rms) *Select the smaller value of IC to minimize the magnitude of I. ·. . XC = − 480031.57 = −152.04 ·. . C = 1 (152.04)(120π) = 17.45 µF docsity.com Problems 10–25 Short circuit current: V2 = 5Iφ = 100 − 5Iφ 25 + j10 Iφ = 3 − j1 A Isc = 5Iφ 1 = 15 − j5 A ZTh = 15 15 − j5 = 0.9 + j0.3 Ω ZL = Z∗Th = 0.9 − j0.3 Ω IL = 15 1.8 = 8.33 A(rms) P = |IL|2(0.9) = 62.5 W [b] VL = (0.9 − j0.3)(8.33) = 7.5 − j2.5 V(rms) I1 = VL j3 = −0.833 − j2.5 A(rms) docsity.com 10–26 CHAPTER 10. Sinusoidal Steady State Power Calculations I2 = I1 + IL = 7.5 − j2.5 A(rms) 5Iφ = I2 + VL ·. . Iφ = 3 − j1 A Id.s. = Iφ − I2 = −4.5 + j1.5 A Sg = −100(3 + j1) = −300 − j100 VA Sd.s. = 5(3 − j1)(−4.5 − j1.5) = −75 + j0 VA Pdev = 300 + 75 = 375 W % developed = 62.5 375 (100) = 16.67% Checks: P25Ω = (10)(25) = 250 W P1Ω = (62.5)(1) = 62.5 W P0.9Ω = 62.5 W∑ Pabs = 250 + 62.5 + 62.5 = 375 W = ∑ Pdev Qj10 = (10)(10) = 100 VAR Qj3 = (6.94)(3) = 20.83 VAR Q−j0.3 = (69.4)(−0.3) = −20.83 VAR Qsource = −100 VAR∑ Q = 100 + 20.83 − 20.83 − 100 = 0 P 10.37 [a] Open circuit voltage: Vφ − 100 5 + Vφ j5 − 0.1Vφ = 0 ·. . Vφ = 40 + j80 V(rms) docsity.com Problems 10–27 VTh = Vφ + 0.1Vφ(−j5) = Vφ(1 − j0.5) = 80 + j60 V(rms) Short circuit current: Isc = 0.1Vφ + Vφ −j5 = (0.1 + j0.2)Vφ Vφ − 100 5 + Vφ j5 + Vφ −j5 = 0 ·. . Vφ = 100 V(rms) Isc = (0.1 + j0.2)(100) = 10 + j20 A(rms) ZTh = VTh Isc = 80 + j60 10 + j20 = 4 − j2 Ω ·. . Ro = |ZTh| = 4.47 Ω [b] I = 80 + j60 4 + √ 20 − j2 = 7.36 + j8.82 A(rms) P = (11.49)2( √ 20) = 590.17 W docsity.com 10–30 CHAPTER 10. Sinusoidal Steady State Power Calculations P 10.39 [a] Set Co = 0.1 µF, so −j/ωC = −j2000 Ω; also set Ro = 4123.1 Ω I = 120 8123.1 + j1000 = 14.55 − j1.79 mA P = 1 2 |I|2(4123.1) = 443.18 mW [b] Yes; 443.18 mW > 360 mW [c] Yes; 443.18 mW < 450 mW P 10.40 [a] 1 ωC = 100 Ω; C = 1 (100)(120π) = 26.53 µF [b] Iwo = 13,800 300 + 13,800 j100 = 46 − j138 A(rms) Vswo = 13,800 + (46 − j138)(1.5 + j12) = 15,525 + j345 = 15,528.83/1.27◦ V(rms) Iw = 13,800 300 = 46 A(rms) Vsw = 13,800 + 46(1.5 + j12) = 13,869 + j552 = 13,879.98/2.28◦ V(rms) % increase = ( 15,528.82 13,879.98 − 1 ) (100) = 11.88% [c] Pwo = |46 − j138|21.5 = 31.74 kW Pw = 462(1.5) = 3174 W % increase = (31,740 3174 − 1 ) (100) = 900% P 10.41 [a] So = original load = 1600 + j 1600 0.8 (0.6) = 1600 + j1200 kVA Sf = final load = 1920 + j 1920 0.96 (0.28) = 1920 + j560 kVA ·. . Qadded = 560 − 1200 = −640 kVAR [b] deliver [c] Sa = added load = 320 − j640 = 715.54/− 63.43◦ kVA pf = cos(−63.43) = 0.4472 leading docsity.com Problems 10–31 [d] I∗L = (1600 + j1200) × 103 2400 = 666.67 + j500 A IL = 666.67 − j500 = 833.33/− 36.87◦ A(rms) |IL| = 833.33 A(rms) [e] I∗L = (1920 + j560) × 103 2400 = 800 + j233.33 IL = 800 − j233.33 = 833.33/− 16.26◦ A(rms) |IL| = 833.33 A(rms) P 10.42 [a] Pbefore = Pafter = (833.33)2(0.05) = 34,722.22 W [b] Vs(before) = 2400 + (666.67 − j500)(0.05 + j0.4) = 2633.33 + j241.67 = 2644.4/5.24◦ V(rms) |Vs(before)| = 2644.4 V(rms) Vs(after) = 2400 + (800 + j233.33)(0.05 + j0.4) = 2346.67 + j331.67 = 2369.99/8.04◦ V(rms) |Vs(after)| = 2369.99 V(rms) P 10.43 [a] 180 = 3I1 + j4I1 + j3(I2 − I1) + j9(I1 − I2) − j3I1 0 = 9I2 + j9(I2 − I1) + j3I1 Solving, I1 = 18 − j18 A(rms); I2 = 12/0◦ A(rms) ·. . Vo = (12)(9) = 108/0◦ V(rms) [b] P = (12)2(9) = 1296 W [c] Sg = −(180)(18 + j18) = −3240 − j3240 VA ·. . Pg = −3240 W % delivered = 1296 3240 (100) = 40% docsity.com 10–32 CHAPTER 10. Sinusoidal Steady State Power Calculations P 10.44 [a] Open circuit voltage: 180 = 3I1 + j4I1 − j3I1 + j9I1 − j3I1 ·. . I1 = 1803 + j7 = 9.31 − j21.72 A(rms) VTh = j9I1 − j3I1 = j6I1 = 130.34 + j55.86 V = 141.81/23.20◦ V(rms) Short circuit current: 180 = 3I1 + j4I1 + j3(Isc − I1) + j9(I1 − Isc) − j3I1 0 = j9(Isc − I1) + j3I1 Solving, Isc = 20 − j20 A I1 = 30 − j20 A ZTh = VTh Isc = 130.34 + j55.86 20 − j20 = 1.86 + j4.66 Ω IL = 130.34 + j55.86 3.72 = 35 + j15 = 38.08/23.20◦ A docsity.com Problems 10–35 [b] When I2 = 0 I1 = 54 1 + j2 = 10.8 − j21.6 A(rms) Pg = (54)(10.8) = 583.2 W Check: Ploss = |I1|2(1) = 583.2 W P 10.48 [a] From Problem 9.67, ZTh = 85 + j85 Ω and VTh = 850 + j850 V. Thus, for maximum power transfer, ZL = Z∗Th = 85 − j85 Ω: I2 = 850 + j850 170 = 5 + j5 A 425/0◦ = (5 + j5)I1 − j20(5 + j5) ·. . I1 = 325 + j1005 + j5 = 42.5 − j22.5 A Sg(del) = 425(42.5 + j22.5) = 18,062.5 + j9562.5 VA Pg = 18,062.5 W [b] Ploss = |I1|2(5) + |I2|2(45) = 11,562.5 + 2250 = 13,812.5 W % loss in transformer = 18,062.5 − 13,812.5 18,062.5 (100) = 23.53% docsity.com 10–36 CHAPTER 10. Sinusoidal Steady State Power Calculations P 10.49 [a] From Problem 9.70, Zab = 100 + j136.26 so I1 = 50 100 + j13.74 + 100 + 136.26 = 50 200 + j150 = 160 − j120 mA I2 = jωM Z22 I1 = j270 800 + j600 (0.16 − j0.12) = 51.84 + j15.12 mA VL = (300 + j100)(51.84 + j15.12)103 = 14.04 + j9.72 V |VL| = 17.08 V [b] Pg(ideal) = 50(0.16) = 8 W Pg(practical) = 8 − |I1|2(100) = 4 W PL = |I2|2(300) = 874.8 mW % delivered = 0.8748 4 (100) = 21.87% P 10.50 [a] Open circuit: VTh = 120 16 + j12 (j10) = 36 + j48 V Short circuit: (16 + j12)I1 − j10Isc = 120 −j10I1 + (11 + j23)Isc = 0 Solving, Isc = 2.4/0◦ A ZTh = 36 + j48 2.4 = 15 + j20 Ω ·. . ZL = Z∗Th = 15 − j20 Ω IL = VTh ZTh + ZL = 36 + j48 30 = 1.2 + j1.6 A(rms) = 2.0/53.13◦ A(rms) PL = |IL|2(15) = 60 W docsity.com Problems 10–37 [b] I1 = Z22I2 jωM = 26 + j3 j10 (1.2 + j1.6) = 5.23/− 30.29◦ A)rms) Ptransformer = (120)(5.23) cos(−30.29◦) − (5.23)2(4) = 432.8 W % delivered = 60 432.8 (100) = 13.86% P 10.51 [a] jωL1 = j(10,000)(1 × 10−3) = j10 Ω jωL2 = j(10,000)(1 × 10−3) = j10 Ω jωM = j10 Ω 200 = (5 + j10)Ig + j5IL 0 = j5Ig + (15 + j10)IL Solving, Ig = 10 − j15 A; IL = −5 A Thus, ig = 18.03 cos(10,000t − 56.31◦) A iL = 5 cos(10,000t − 180◦) A [b] k = M√ L1L2 = 0.5√ 1 = 0.5 [c] When t = 50π µs: 10,000t = (10,000)(50π) × 10−6 = 0.5π rad = 90◦ ig(50π µs) = 18.03 cos(90◦ − 56.31◦) = 15 A iL(50π µs) = 5 cos(90◦ − 180◦) = 0 A w = 1 2 L1i 2 1 + 1 2 L2i 2 2 + Mi1i2 = 1 2 (10−3)(15)2 + 0 + 0 = 112.5 mJ When t = 100π µs: 10,000t = (104)(100π) × 10−6 = π = 180◦ ig(100π µs) = 18.03 cos(180 − 56.31◦) = −10 A iL(100π µs) = 5 cos(180 − 180◦) = 5 A w = 1 2 (10−3)(10)2 + 1 2 (10−3)(5)2 + 0.5 × 10−3(−10)(5) = 37.5 mJ docsity.com 10–40 CHAPTER 10. Sinusoidal Steady State Power Calculations Sc = VcI∗c = 31.25 + j0 VA Sd = VdI∗d = −6.25 + j25 VA Se = VeI∗e = 0 − j101.5625 VA Sf = VfI∗f = 31.25 VA [c] ∑ Pdev = 62.5 W∑ Pabs = 6.25 + 31.25 − 6.25 + 31.25 = 62.5 W Note that the total power absorbed by the coupled coils is zero: 6.25 − 6.25 = 0 = Pb + Pd [d] ∑ Qdev = 101.5625 VAR The capacitor is developing magnetizing vars.∑ Qabs = 75 + 1.5625 + 25 = 101.5625 VAR∑ Q absorbed by the coupled coils is Qb + Qd = 26.5625 VAR P 10.53 Open circuit voltage: I1 = 10/0◦ 1 + j2 = 2 − j4 A VTh = j2I1 + j1.2I1 = j3.2I1 = 12.8 + j6.4 = 14.31/26.57◦ V Short circuit current: 10/0◦ = (1 + j2)I1 − j3.2Isc docsity.com Problems 10–41 0 = −j3.2I1 + j5.4Isc Solving, Isc = 5.89/− 5.92◦ A ZTh = 14.31/26.57◦ 5.89/− 5.92◦ = 2.43/32.49 ◦ = 2.048 + j1.304 Ω ·. . I2 = 14.31/26.57 ◦ 4.096 = 3.49/26.57◦ A 10/0◦ = (1 + j2)I1 − j3.2I2 ·. . I1 = 10 + j3.2I21 + j2 = 10 + j3.2(3.49/26.57◦) 1 + j2 = 5/0◦ A Zg = 10/0◦ 5/0◦ = 2 + j0 = 2/0◦ Ω P 10.54 [a] 272/0◦ = 2Ig + j10Ig + j14(Ig − I2) − j6I2 +j14Ig − j8I2 + j20(Ig − I2) 0 = j20(I2 − Ig) − j14Ig + j8I2 + j4I2 +j8(I2 − Ig) − j6Ig + 8I2 docsity.com 10–42 CHAPTER 10. Sinusoidal Steady State Power Calculations Solving, Ig = 20 − j4 A(rms); I2 = 24/0◦ A(rms) P8Ω = (24)2(8) = 4608 W [b] Pg(developed) = (272)(20) = 5440 W [c] Zab = Vg Ig − 2 = 272 20 − j4 − 2 = 11.08 + j2.62 = 11.38/13.28 ◦ Ω [d] P2Ω = |Ig|2(2) = 832 W∑ Pdiss = 832 + 4608 = 5440 W = ∑ Pdev P 10.55 [a] 300 = 60I1 + V1 + 20(I1 − I2) 0 = 20(I2 − I1) + V2 + 40I2 V2 = 1 4 V1; I2 = −4I1 Solving, V1 = 260 V(rms); V2 = 65 V(rms) I1 = 0.25 A(rms); I2 = −1.0 A(rms) V5A = V1 + 20(I1 − I2) = 285 V(rms) ·. . P = −(285)(5) = −1425 W Thus 1425 W is delivered by the current source to the circuit. [b] I20Ω = I1 − I2 = 1.25 A(rms) ·. . P20Ω = (1.25)2(20) = 31.25 W docsity.com Problems 10–45 Pg(del) = (2.25 × 10−3)(100) = 225 mW % delivered = 90 225 (100) = 40% P 10.60 [a] Zab = ( 1 + N1 N2 )2 (1 − j2) = 25 − j50 Ω ·. . I1 = 100/0 ◦ 15 + j50 + 25 − j50 = 2.5/0 ◦ A I2 = N1 N2 I1 = 10/0◦ A ·. . IL = I1 + I2 = 12.5/0◦ A(rms) P1Ω = (12.5)2(1) = 156.25 W P15Ω = (2.5)2(15) = 93.75 W [b] Pg = −100(2.5/0◦) = −250 W∑ Pabs = 156.25 + 93.75 = 250 W = ∑ Pdev P 10.61 [a] 25a21 + 4a 2 2 = 500 I25 = a1I; P25 = a21I 2(25) I4 = a2I; P4 = a22I 2(4) P4 = 4P25; a22I 24 = 100a21I 2 ·. . 100a21 = 4a22 25a21 + 100a 2 1 = 500; a1 = 2 25(4) + 4a22 = 500; a2 = 10 [b] I = 2000/0◦ 500 + 500 = 2/0◦ A(rms) I25 = a1I = 4 A P25Ω = (16)(25) = 400 W [c] I4 = a2I = 10(2) = 20 A(rms) V4 = (20)(4) = 80/0◦ V(rms) docsity.com 10–46 CHAPTER 10. Sinusoidal Steady State Power Calculations P 10.62 [a] Open circuit voltage: 500 = 100I1 + V1 V2 = 400I2 V1 1 = V2 2 ·. . V2 = 2V1 I1 = 2I2 Substitute and solve: 2V1 = 400I1/2 = 200I1 ·. . V1 = 100I1 500 = 100I1 + 100I1 ·. . I1 = 500/200 = 2.5 A ·. . I2 = 12I1 = 1.25 A V1 = 100(2.5) = 250 V; V2 = 2V1 = 500 V VTh = 20I1 + V1 − V2 + 40I2 = −150 V(rms) Short circuit current: 500 = 80(Isc + I1) + 360(Isc + 0.5I1) 2V1 = 40 I1 2 + 360(Isc + 0.5I1) 500 = 80(I1 + Isc) + 20I1 + V1 docsity.com Problems 10–47 Solving, Isc = −1.47 A; I1 = 4.41 A; V1 = 176.47 V RTh = VTh Isc = −150 −1.47 = 102 Ω P = 752 102 = 55.15 W [b] 500 = 80[I1 − (75/102)] − 75 + 360[I2 − (75/102)] 575 + 6000 102 + 27,000 102 = 80I1 + 180I1 ·. . I1 = 3.456 A Psource = (500)[3.456 − (75/102)] = 1360.29 W % delivered = 55.15 1360.29 (100) = 4.05% [c] P80Ω = 80 ( I1 − 75102 )2 = 592.13 W P20Ω = 20I21 = 238.86 W P40Ω = 40I22 = 119.43 W P102Ω = 752 102 = 55.15 W P360Ω = 360 ( I2 − 75102 )2 = 354.73 W ∑ Pabs = 592.13 + 238.86 + 119.43 + 55.15 + 354.73 = 1360.3 W = ∑ Pdev docsity.com 10–50 CHAPTER 10. Sinusoidal Steady State Power Calculations Transfer the secondary impedance to the primary side: Zp = 1 25 (100 + jXC) = 4 + j XC 25 Ω Now maximize I by setting (XC/25) = −8 Ω: ·. . C = 1 200(20 × 103) = 0.25 µF [b] I = 60 + j120 10 = 6 + j12 A P = |I|2(4) = 720 W [c] Ro 25 = 6 Ω; ·. . Ro = 150 Ω [d] I = 60 + j120 12 = 5 + j10 A P = |I|2(6) = 750 W P 10.65 [a] Zab = 50 − j400 = ( 1 − N1 N2 )2 ZL = ( 1 − 2800 700 )2 ZL = 9ZL ·. . ZL = 19(50 − j400) = 5.556 − j44.444 Ω [b] I1 = 24 100 = 240/0◦ mA docsity.com Problems 10–51 N1I1 = −N2I2 I2 = −4I1 = 960/180◦ mA IL = I1 + I2 = 720/180◦ mA(rms) VL = (5.556 − j44.444)IL = −4 + j32 = 32.25/97.13◦ V(rms) P 10.66 [a] Begin with the MEDIUM setting, as shown in Fig. 10.31, as it involves only the resistor R2. Then, Pmed = 500 W = V 2 R2 = 1202 R2 Thus, R2 = 1202 500 = 28.8 Ω [b] Now move to the LOW setting, as shown in Fig. 10.30, which involves the resistors R1 and R2 connected in series: Plow = V 2 R1 + R2 = V 2 R1 + 28.8 = 250 W Thus, R1 = 1202 250 − 28.8 = 28.8 Ω [c] Note that the HIGH setting has R1 and R2 in parallel: Phigh = V 2 R1‖R2 = 1202 28.8‖28.8 = 1000 W If the HIGH setting has required power other than 1000 W, this problem sould not have been solved. In other words, the HIGH power setting was chosen in such a way that it would be satisfied once the two resistor values were calculated to satisfy the LOW and MEDIUM power settings. docsity.com 10–52 CHAPTER 10. Sinusoidal Steady State Power Calculations P 10.67 [a] PL = V 2 R1 + R2 ; R1 + R2 = V 2 PL PM = V 2 R2 ; R2 = V 2 PM PH = V 2(R1 + R2) R1R2 R1 + R2 = V 2 PL ; R1 = V 2 PL − V 2 PM PH = V 2V 2/PL( V 2 PL − V 2 PM ) ( V 2 PM ) = PMPLPM PL(PM − PL) PH = P 2M PM − PL [b] PH = (750)2 (750 − 250) = 1125 W P 10.68 First solve the expression derived in P10.67 for PM as a function of PL and PH. Thus PM − PL = P 2 M PH or P 2M PH − PM + PL = 0 P 2M − PMPH + PLPH = 0 ·. . PM = PH2 ± √( PH 2 )2 − PLPH = PH 2 ± PH √ 1 4 − ( PL PH ) For the specified values of PL and PH PM = 500 ± 1000 √ 0.25 − 0.24 = 500 ± 100 ·. . PM1 = 600 W; PM2 = 400 W Note in this case we design for two medium power ratings If PM1 = 600 W R2 = (120)2 600 = 24 Ω docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved