Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solutions for Problem Set 6 - Quantum Field Theory I | PHY 396K, Assignments of Physics

Material Type: Assignment; Class: QUANTUM FIELD THEORY I; Subject: Physics; University: University of Texas - Austin; Term: Unknown 2000;

Typology: Assignments

Pre 2010

Uploaded on 08/26/2009

koofers-user-zok
koofers-user-zok 🇺🇸

10 documents

1 / 9

Toggle sidebar

Related documents


Partial preview of the text

Download Solutions for Problem Set 6 - Quantum Field Theory I | PHY 396K and more Assignments Physics in PDF only on Docsity! PHY–396 K. Solutions for problem set #6. Problem 1(a): By definition, Ŝµν def = i4 [γ µ, γν ] = i2(γ µγν − gµν). Using this formula, we saw in class that[ γλ, Sµν ] = i ( gλµγν − gλνγµ ) . Consequently, by Leibniz rule, [ γκγλ, Sµν ] = γκ [ γλ, Sµν ] + [ γκ, Sµν ] γλ = γκ ( igλµγν − igλνγµ ) + ( igκµγν − igκνγµ ) γλ = igλµγκγν − igκνγµγλ − igλνγκγµ + igκµγνγλ = igλµ ( γκγν − gκν ) − igκν ( γµγλ − gλµ ) − igλν ( γκγµ − gκµ ) + igκµ ( γνγλ − gλν ) = 2gλµSκν − 2gκνSµλ − 2gλνSκµ + 2gκµSνλ, and therefore, [ Sκλ, Sµν ] = i2 [ γκγλ, Sµν ] = igλµSκν − igκνSµλ − igλνSκµ + igκµSνλ = igλµSκν + igκνSλµ − igλνSκµ − igκµSλν . (S.1) Q.E .D. Problem 1(b): Let F = − i2θαβS αβ, thus M = eF and M−1 = e−F . We shall use the multiple- commutator formula for the e−Fγµe+F , so we begin by evaluating the single commutator [ γµ, F ] = − i2θαβ [ γµ, F ] = 12θαβ ( gµαγβ − gµβγα ) = 12θ µ βγ β − 12θ µ α γ α = θµνγ ν . (S.2) The multiple commutators follow immediately from this formula, [[ γµ, F ] , F ] = θµλθ λ νγ ν ,[[[ γµ, F ] , F ] , F ] = θµλθ λ ρθ ρ νγ ν , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (S.3) 1 Consequently, M−1γµM = e−Fγµe+F = γµ + [ γµ, F ] + 12 [[ γµ, F ] , F ] + 16 [[[ γµ, F ] , F ] , F ] + · · · = γµ + θµνγ ν + 12 θ µ λθ λ νγ ν + 16 θ µ λθ λ ρθ ρ νγ ν + · · · = Lµνγ ν . (S.4) Q.E .D. Problem 1(c): { γρ, γλγµγν } = 2gρλ γµγν − 2gρµ γλγν + 2gρν γλγµ,[ γρ, γκγλγµγν ] = 2gρκ γλγµγν − 2gρλ γκγµγν + 2gρµ γκγλγν − 2gρν γκγλγµ,[ Sρσ, γλγµγν ] = igσλ γργµγν + igσµ γλγργν + igσν γλγµγρ − igρλ γσγµγν − igρµ γλγσγν − igρν γλγµγσ. The algebra is straigtforward. Problem 1(d): γα γα = 1 2{γ α, γβ}gαβ = gαβgαβ = 4; γαγνγα = 2g ανγα − γν γαγα = 2γν − γν(4) = −2γν ; γαγµγνγα = 2g αµγνγα − γµ γαγνγα = 2γνγµ − γµ (−2γν) = 2{γν , γµ} = 4gµν ; γαγλγµγνγα = 2g αλγµγνγα − γλ γαγµγνγα = 2γµγνγλ − γλ (4gµν) = 2 ( γµγν − 2gµν ) γλ = −2γνγµγλ. (S.5) Problem 1(e): Gauge-covariant derivatives Dµ do not commute with each other: [Dµ, Dν ] = iqFµν . Therefore( γµDµ )2 6= D2 but rather ( γµDµ )2 = γµγν DµDν = (g µν − 2iSµν) DµDν = D2 − iSµν [Dµ, Dν ] = D2 + qFµν Sµν (S.6) 2 Next consider the determinant det ( Xµσ µ ) = det ( X0 +X3 X1 − iX2 X1 + iX2 X0 −X3 ) = (X0) 2 − (X3)2 − (X1)2 − (X2)2 ≡ X2. (S.16) According to eq. (4), X ′ 2 = det ( X ′µσ µ ) = |det(U)|2 det ( Xµσ µ ) = X2 (S.17) because the SL(2,C) matrices U have det(U) = 1. Consequently, for any 4–vector Xµ, we have (LX)2 = X2, which means that Xµ → LµνXν is indeed a Lorentz transform. Finally, consider the group law: σλ L λ µ(U2U1) = (U2U1)σµ(U2U1) † = U2 ( U1σµU † 1 = σν L ν µ(U1) ) U †2 = ( U2 σν U † 2 ) Lνµ(U1) = σλ L λ ν(U2)L ν µ(U1) (S.18) and hence Lλµ(U2U1) = L λ ν(U2)L ν µ(U1) i.e., L(U2U1) = L(U2)L(U1). Q.E .D. Problem 2(d): For U = exp ( − i2θ n~σ ) = cos θ2 − i sin θ 2 n~σ and U † = U−1 = cosθ2 + i sin θ 2 n~σ, Uσ0U † = 1 = σ0, which means that L(U) is merely a rotation of the 3d space. Specifically, ~σ · x′ = U(x~σ)U † = cos2 θ2 − i 2 sin θ [n~σ,x~σ] + sin 2 θ 2 (n~σ)(x~σ)(n~σ) = cos2 θ2 + sin θ (n× x) · ~σ + sin 2 θ 2 ( 2(nx)(n~σ)− (x~σ) ) = ~σ · ( cos θ ( x− n(nx) ) + sin θ n× x + n(nx) ) , thus x′ = cos θ ( x− n(nx) ) + sin θ n× x + n(nx), (S.19) which indeed describes a rotation through angle θ around axis n. On the other hand, for U = U † = exp ( − r2 n~σ ) = cosh r2 − sinh r 2 n~σ, U ( xµσµ ≡ t− x~σ ) U † = cosh2 r2 (t− x~σ) − 1 2 sinh r {n~σ, t− x~σ} + sinh2 r2 (n~σ)(t− x~σ)(n~σ) = cosh2 r2 (t− x~σ) − sinh r ( tn~σ − nx ) + sinh2 r2 ( t− 2(nx)(n~σ) + (x~σ) ) = ( cosh r t + sinh r nx ) − (~σn) ( sinh r t + cosh r nx ) − ~σ · ( x− n(nx) ) , (S.20) 5 and therefore, t′ = (cosh r) t + (sinh r) nx, x′ = n ( (sinh r) t + (cosh r) nx ) + ( x− n(nx) ) , (S.21) which is precisely the Lorentz boost of rapidity r in the direction n. (The rapidity r is related to the usual parameters of a Lorentz boost according to β = tanh r, γ = cosh r, γβ = sinh r. For several boosts in the same directions, the rapidities add up, rtot = r1 + r2 + · · ·.) Q.E .D. Problem 3(a): In light of eq. (5), Φ̂(x′ = Lx) = ∫ d3p′ (2π)3 1 2Ep′ [ e−ip ′x′ √ 2p′0 â(p′) + e+ip ′x′ √ 2p′0 â†(p′) ] p′0=Ep′ = ∫ d3p (2π)3 1 2Ep [ e−ipx √ 2(Lp)0 â(Lp) + e+ipx √ 2(Lp)0 â†(Lp) ] p0=Ep (S.22) where p′ = Lp and hence p′x′ = px and ∫ d3p′ 2Ep′ = ∫ d3p 2Ep . At the same time, eq. (7) implies Φ̂(Lx) = D̂(L) Φ̂(x) D̂†(L) = ∫ d3p (2π)3 1 2Ep [ e−ipx √ 2p0 D̂(L) â(p) D̂†(L) + e+ipx √ 2p0 D̂(L) â†(p) D̂†(L) ] p0=Ep (S.23) Since eqs. (S.22) and (S.23) should agree for all x, Fourier transforms of their respective right hand sides should agree for all p, hence √ 2p0 D̂(L) â(p) D̂†(L) = √ 2(Lp)0 â(Lp),√ 2p0 D̂(L) â†(p) D̂†(L) = √ 2(Lp)0 â†(Lp). (8.1–2) Consequently, D(L) |p〉 = D̂(L) (√ 2p0 â†(p) |0〉 ) = √ 2p0 D̂(L) â†(p) ( |0〉 = D̂†(L) |0〉 ) = (√ 2p0 D̂(L) â†(p) D̂†(L) = √ (Lp)0 â†(Lp) ) |0〉 = |Lp〉 , (8.3) 6 and likewise D(L) |p1, p2〉 = D̂(L) (√ (2p01)(2p 0 2) â †(p1)â †(p2) |0〉 ) = √ (2p01)(2p 0 2) D̂(L) â †(p1)â †(p2) ( |0〉 = D̂†(L) |0〉 ) = (√ 2p01 D̂(L) â †(p1) D̂†(L) )(√ 2p02 D̂(L) â †(p2) D̂†(L) ) |0〉 = (√ 2(Lp1)0 â †(Lp1) )(√ 2(Lp2)0 â †(Lp2) ) |0〉 = |Lp1, Lp2〉 , (8.4) etc., etc. Q.E .D. Problem 3(b): Using eq. (11) twice, we have D̂(L2)D̂(L1) φ̂a(x) ( D̂(L2)D̂(L1) )† = D̂(L2) ( D̂(L1) φ̂a(x) D̂†(L1) ) D̂†(L2) = D̂(L2) ( M ba (L −1 1 ) φ̂b(L1x) ) D̂†(L2) = M ba (L −1 1 ) ( D̂(L2) φ̂b(L1x) D̂†(L2) ) = M ba (L −1 1 )M c b (L −1 2 ) φ̂c(L2L1x). (S.24) On the other hand, D̂(L2L1) φ̂a(x) D̂†(L2L1) = M ca ( (L2L1) −1 = L−11 L −1 2 ) φ̂c(L2L1x), (S.25) which obviously agrees with (S.24) if and only if M ca (L −1 1 L −1 2 ) = M b a (L −1 1 )M c b (L −1 2 ) (S.26) i.e., if and only if the matrices M ba (L) form a representation of the Lorentz group. 7
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved