Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Solutions for Problem Set #3 in Quantum Mechanics, Assignments of Physics

Solutions for problem set #3 in a quantum mechanics course. It covers various topics such as wave functions, occupation numbers, commutators, normal ordering, and coherent states for both single-particle and multi-oscillatory systems. The solutions involve applying mathematical formulas and concepts like the leibniz rule, product-of-exponentials formula, and schrödinger picture.

Typology: Assignments

Pre 2010

Uploaded on 08/26/2009

koofers-user-rfn-1
koofers-user-rfn-1 🇺🇸

10 documents

1 / 13

Toggle sidebar

Related documents


Partial preview of the text

Download Solutions for Problem Set #3 in Quantum Mechanics and more Assignments Physics in PDF only on Docsity! PHY–396 K. Solutions for problem set #3. Problem 1(a): First, let us verify eq. (4) for a wave function Ψ(x1, . . . ,xN ) of the form (3), that is, for the quantum state |N, Ψ〉 = |α1, . . . , αN 〉 = ∣∣{nβ}〉. Let us define Ψ′(x1, . . . ,xN−1) according to eq. (3). Using orthonormality of the 1-particle wave functions φβ(x), we have Ψ′(x1, . . . ,xN−1) = √ N√ Cα1,...,αN ∫ d3xN ϕ ∗ γ(xN )× ∑ (α̃1,...,α̃N ) ϕα̃1(x1)× · · · × ϕα̃N (xN ) = √ N√ Cα1,...,αN ∑ (α̃1,...,α̃N−1,α̃N ) ϕα̃1(x1)× · · · × ϕα̃N−1(xN−1)× δα̃N ,γ , (S.1) which leads to two distinct situations according to the nγ : (A) For nγ = 0 none of the α1, . . . , αN equals γ, hence for any permutation (α̃1, . . . , α̃N−1, α̃N ) we have α̃n 6= γ. Consequently, every term in the sum (S.1) vanishes and therefore Ψ′ ≡ 0. At the same time, âγ ∣∣{nβ}〉 = 0 for nγ = 0, and therefore ∣∣(N − 1), Ψ′〉 = 0 = âγ ∣∣{nβ}〉 . (S.2) (B) On the other hand, for nγ > 0 we have ∣∣{nβ}〉 = ∣∣α1, . . . , αN−1, γ〉, and permutations with α̃N = αN = γ do contribute to the sum (S.1). Note that we sum over distinct permutations of (α1, . . . , αN ) only, so even if some of the α1, . . . , αN−1 are also equal to γ, restricting the sum to permutations (α̃1, . . . , α̃N−1, α̃N ) with α̃N = γ is equivalent to fixing α̃N = αN and summing over the permutations (α̃1, . . . , α̃N−1) of the (α1, . . . , αN−1). Thus, Ψ′(x1, . . . ,xN−1) = √ N√ Cα1,...,αN ∑ distinct permutations (α̃1,...,α̃N−1) of (α1,...,αN−1) ϕα̃1(x1) · · ·ϕα̃N−1(xN−1). (S.3) Comparing this expression to eq. (3) for N ′ = N − 1, we immediately see that except for the overall normalization, Ψ′(x1, . . . ,xN−1) is the wave function of the (N − 1) particle state 1 ∣∣α1, . . . , αN−1〉. Specifically, ∣∣(N − 1), Ψ′〉 = √N√ Cα1,...,αN−1,αN × √ Cα1,...,αN−1 × ∣∣α1, . . . , αN−1〉 = √ N nγ × Cα1,...,αN−1 Cα1,...,αN−1,αN × âγ ∣∣{nβ}〉 . (S.4) To fix the normalization factor, remember that Cα1,...,αN is the number of distinct permutations of the (α1, . . . , αN ), which is equal to the number of all permutations divided by the number of trivial permutations of identical α’s. In terms of the occupation numbers, Cα1,...,αN = N !∏ β nβ! . (S.5) Likewise, Cα1,...,αN−1 = (N − 1)!∏ β n ′ β! (S.6) where n′β = nβ − δβ,γ . Consequently, Cα1,...,αN−1 Cα1,...,αN−1,αN = (N − 1)! N ! × nγ ! (nγ − 1)! = nγ N , (S.7) and therefore in eq. (S.4) the numerical factors cancel out and ∣∣(N − 1), Ψ′〉 = âγ ∣∣{nβ}〉 . (S.8) Altogether, combining eqs. (S.2) and (S.8), we find that ∀ |Ψ〉 = |α1, . . . , αN 〉 : ∣∣Ψ′〉 = âγ |Ψ〉 . (S.9) By linearity of eq. (4) it follows that |Ψ′〉 = âγ |Ψ〉 for any linear combination of the |α1, . . . , αN 〉 states. As we saw in class, such states form a complete basis of the N -boson Hilbert space, 2 eq. (S.16), 〈N, Ψ1| Ô(1)tot |N, Ψ2〉 = 〈N, Ψ1| Ô (2) tot |N, Ψ2〉 for any 〈N, Ψ1| and |N, Ψ2〉 . (S.17) Now we need to extend this result to generic one-body operators. Fortunately, any operator Â1 in the one-particle Hilbert space can be decomposed as Â1 = ∑ α,β |α〉Aα,β 〈β| where Aα,β are the matrix elements 〈α| Â1 |β〉. The definition (6) of first-quantized Â(1)tot of N particles is obviously linear with respect to the Â1, thus  (1) tot = ∑ α,β Aα,β N∑ i=1 ( |α〉 〈β| ) i th particle (S.18) and therefore, thanks to eq. (S.17), 〈N, Ψ1| Â(1)tot |N, Ψ2〉 = ∑ α,β Aα,β 〈N, Ψ1| â†αâβ |N, Ψ2〉 = 〈N, Ψ1|  (2) tot |N, Ψ2〉 . Q.E .D. Problem 1(d): Again, we start with a particularly simple 2-body operator Ô2 = (|α〉⊗ |β〉)(〈γ|⊗〈δ|) which acts on two-particle wave functions according to 〈2, Ψ1| Ô2 |2, Ψ2〉 = ∫ d3x1 ∫ d3x2 Ψ ∗ 1(x1,x2)φα(x1)φβ(x2) (S.19) × ∫ d3y1 ∫ d3y2 φ ∗ γ(x1)φ ∗ δ(x2)Ψ2(x1,x2). Consequently, the first-quantized Ô (1) tot operator constructed according to eq. (9) acts in the N - 5 boson Hilbert space as 〈N, Ψ1| Ô(1)tot |N, Ψ2〉 = = 12 ∑ i6=j ∫ d3x1 · · · ∫ d3xN Ψ ∗ 1(x1, . . . ,xi, . . . ,xj . . . . ,xN )φα(xi)φβ(xj)× × ∫ d3x′i ∫ d3x′j φ ∗ γ(x ′ i)φ ∗ δ(x ′ j)Ψ2(x1, . . . ,x ′ i, . . . ,x ′ j , . . . ,xN ) = N(N − 1) 2 ∫ d3x1 · · · ∫ d3xN Ψ ∗ 1(x1, . . . ,xN−2,xN−1,xN )φα(xN−1)φβ(xN )× × ∫ d3x′N−1 ∫ d3x′N φ ∗ γ(xN−1)φ ∗ δ(xN )Ψ2(x1, . . . ,xN−2,x ′ N−1,x ′ N ) = 12 ∫ d3x1 · · · ∫ d3xN−2 Ψ ′′∗ 1 (x1, . . . ,xN−2) Ψ ′′ 2(x1, . . . ,xN−2) (S.20) where again the second equality follows from the total symmetry of the bosonic wave functions, and where on the the last line Ψ |prime′∗ 1 and Ψ ′′ 2 are (N − 2) particle wave functions constructed according to Ψ′′∗1 (x1, . . . ,xN−2) = √ N(N − 1) ∫ d3xN−1 ∫ d3xN Ψ ∗ 1(x1, . . . ,xN )ϕα(xN−1)ϕβ(xN ), (S.21) Ψ′′2(x1, . . . ,xN−2) = √ N(N − 1) ∫ d3xN−1 ∫ d3xN ϕ ∗ γ(xN−1)ϕ ∗ δ(xN )Ψ2(x1, . . . ,xN ). (S.22) Notice that the double integral in eq. (S.22) is precisely the integral of eq. (4) applied twice, thus in Fock-space notations ∣∣(N − 2), Ψ′′2〉 = âγ âδ |N, Ψ2〉 . (S.23) As to eq. (S.21), it looks like the complex conjugate of eq. (S.22), hence in Fock-space notations 〈 (N − 2), Ψ′′1 ∣∣ = 〈N, Ψ1| â†αâ†β . (S.24) Putting this all together, we arrive at 〈N, Ψ1| Ô(1)tot |N, Ψ2〉 = 12 〈N, Ψ1| â † αâ † β âγ âδ |N, Ψ2〉 for Ô2 = (|α〉 ⊗ |β〉)(〈γ| ⊗ 〈δ|). (S.25) To extend this result to a general two-body operator B̂2, we use matrix-element decomposition 6 in the two-distinct-particle Hilbert space: B̂2 = 1 2 ∑ α,β,γ,δ Bα,β,γ,δ ( |α〉⊗ |β〉 )( 〈γ| ⊗ 〈δ| ) where Bα,β,γ,δ = (〈α| ⊗ 〈β|)B̂2(|γ〉⊗ |δ〉). (S.26) Consequently, similarly to eq. (S.18), the first-quantized form of Ŝtot can be written as B̂ (1) tot = 1 2 ∑ α,β,γ,δ Bα,β,γ,δ ∑ i6=j ( |α〉 〈γ| ) i th particle × ( |β〉 〈δ| ) j th particle , (S.27) and therefore 〈N, Ψ1| B̂(1)tot |N, Ψ2〉 = 12 ∑ α,β,γ,δ Bα,β,γ,δ × 〈N, Ψ1| â†αâ † β âγ âδ |N, Ψ2〉 ≡ 〈N, Ψ1| B̂ (2) tot |N, Ψ2〉 Q.E .D. Problem 2(a): This is a simple exercise of the Leibniz rule for commutators: [â†αâβ, â † γ ] = [â † α, â † γ ]âβ + â † α[âβ, â † γ ] = 0 + â † αδβ,γ = δβ,γ â † α , [â†αâβ, âδ] = [â † α, âδ]âβ + â † α[âβ, âδ] = −δα,δâβ + 0 = −δα,δâβ , [â†αâβ, â † γ âδ] = [â † αâβ, â † γ ]âδ + â † γ [â † αâβ, âγ âδ] = δβ,γ â † αâδ − δα,δâ † γ âβ . (S.28) Problem 2(b): Given  (2) tot = ∑ α,β 〈α| Â1 |β〉 â†αâβ (S.29) and B̂ (2) tot = ∑ γ,δ 〈γ| B̂1 |δ〉 â†γ âδ , (S.30) 7 and therefore |ξ〉 def= eξâ †−ξ∗â |0〉 = e−|ξ| 2/2eξâ † e−ξ ∗â |0〉 = e−|ξ| 2/2eξâ † |0〉 . (S.37) (Note e−ξ ∗â |0〉 = |0〉 since â |0〉 = 0.) Next, [â, â†] = 1 implies that for any function f(â†), [â, f(â†)] = f ′(â†). In particular, [â, eξâ † ] = ξeξâ † or in other words, (â − ξ)eξ↠= eξ↠â and hence (â − ξ) |ξ〉 ∝ eξ↠â |0〉 = 0. Q.E .D. Problem 3(b): For any normal-ordered product of creation and annihilation operators — i.e., a product in which all creation operators are to the right of all annihilation operators — one has 〈ξ| (â†)k(â)` |ξ〉 = (ξ∗)kξ`, simply because â |ξ〉 = ξ |ξ〉 and 〈ξ| ↠= ξ∗ 〈ξ|. In particular, 〈ξ| (n̂ = â†â) |ξ〉 = ξ∗ξ. On the other hand, n̂2 = â†ââ†â = â†â†ââ + â†â =⇒ 〈ξ| n̂2 |ξ〉 = (ξ∗)2ξ2 + ξ∗ξ = n̄2 + n̄ (S.38) hence ∆n = √ 〈n̂2〉 − n̄2 = √ n̄. In a similar manner, q̂ = √ h̄ 2mω (â + â†), q̂2 = h̄ 2mω ( (â)2 + (â†)2 + 2â†â + 1 ) =⇒ 〈ξ| q̂2 |ξ〉 = h̄ 2mω ( (ξ + ξ∗)2 + 1 ) = 〈ξ| q̂ |ξ〉2 + h̄ 2mω and likewise 〈ξ| p̂2 |ξ〉 = mωh̄ 2 ( (−iξ + iξ∗)2 + 1 ) = 〈ξ| p̂ |ξ〉2 + mωh̄ 2 , thus ∆q = √ h̄ 2mω , ∆p = √ mωh̄ 2 , ∆q∆p = h̄ 2 . (S.39) Q.E .D. 10 Problem 3(c): In the Schrödinger picture, ↠is time independent, hence (d/dt)eξâ † = (dξ/dt)â†eξâ † . Using time independence of the magnitude |ξ|, we then have d dt ( |ξ〉 = e−|ξ| 2/2eξâ † |0〉 ) = dξ dt ↠|ξ〉 = 1 ξ dξ dt â†â |ξ〉 = −iωâ†â |ξ〉 (S.40) where the last equality comes from ξ(t) = ξ0e −iωt. In other words, ih̄ d dt |ξ(t)〉 = h̄ωâ†â |ξ(t)〉 ≡ Ĥ |ξ(t)〉 . (S.41) Q.E .D. Problem 3(d): In question 3(a) we saw that [â, â†] = 1 implies eξâ † â = (â− ξ)eξ↠for any c-number ξ. Iterating this identity gives us eξâ † f(â) = f(â − ξ)eξ↠for any function f(â) of the annihilation operator, and in particular eξâ † eη ∗â = eη ∗(â−ξ) eξâ † = e−η ∗ξ eη ∗â eξâ † . (S.42) Consequently, the quantum overlap of the coherent states |ξ〉 and 〈η| is 〈η|ξ〉 = e−|η| 2/2e−|ξ| 2/2 〈0| eη ∗âeξâ † |0〉 = e−|η| 2/2e−|ξ| 2/2e−η ∗ξ 〈0| eξâ † eη ∗â |0〉 = exp ( −12 |η| 2 − 12 |ξ| 2 − η∗ξ ) × 1 (S.43) because eη ∗â |0〉 = |0〉, 〈0| eξ↠= 〈0| and 〈0|0〉 = 1. In terms of the probability overlap, |〈η|ξ〉|2 = e−|η−ξ| 2 . (S.44) 11 Problem 3(e): Generalization of coherent states to multi-oscillatory systems and further to the creation / an- nihilation fields is completely straightforward: |coherent〉 def= exp ( F̂ † − F̂ ) |0〉 = e−N̄/2 eF̂ † |0〉 (S.45) where F̂ † = ξ↠→ ∑ α ξαâ † α → ∫ d3xΦ(x)Ψ̂†(x). (S.46) Similar to the single-oscillator theory, ( Ψ̂(x)− Φ(x) ) eF̂ † = eF̂ † Ψ̂†(x), hence Ψ̂(x) |Φ〉 = Φ(x) |Φ〉 . (S.47) Problem 3(f): Using eq. (S.47) and its hermitian conjugate, we have 〈Φ| Ψ̂†(x1) · · · Ψ̂†(xk)Ψ̂(y1) · · · Ψ̂(y`) |Φ〉 = Φ∗(x1) · · ·Φ∗(xk)Φ(y1) · · ·Φ(y`) (S.48) for any normal-ordered product of the quantum fields. Specifically, for the particle-number operator N̂ we have eq. (12), while for its square — whose normal-ordered form N̂2 = ∫∫ d3x d3y Ψ̂†(x)Ψ̂†(y)Ψ̂(x)Ψ̂(y) + ∫ d3x Ψ̂†(x)Ψ̂(x) (S.49) generalizes eq. (S.38) — we have 〈Φ| N̂2 |Φ〉 = ∫∫ d3x d3y Φ∗(x)Φ∗(y)Φ(x)Φ(y) + ∫ d3xΦ∗(x)Φ(x) = 〈Φ| N̂ |Φ〉2 + 〈Φ| N̂ |Φ〉 , (S.50) and hence ∆N = √ N̄ , Q.E .D. 12
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved