Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Limits and Derivatives Calculation Exercise - Prof. Gary D. Berg, Quizzes of Mathematics

A collection of mathematical problems focusing on limits and derivatives calculations. It includes various types of limits, such as limits as x approaches a number or infinity, and limits of functions like sin, cos, tan, and log. The document also covers the derivatives of different functions, including polynomial functions, trigonometric functions, and exponential functions.

Typology: Quizzes

2010/2011

Uploaded on 10/23/2011

shaharyaranjum
shaharyaranjum 🇺🇸

1 document

1 / 9

Toggle sidebar

Related documents


Partial preview of the text

Download Limits and Derivatives Calculation Exercise - Prof. Gary D. Berg and more Quizzes Mathematics in PDF only on Docsity! haas (ah28474) – HW01 – BERG – (56495) 1 This print-out should have 22 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Determine if lim x→ 7 √ x + 9 − 4 x − 7 exists, and if it does, find its value. 1. limit = 8 2. limit = 7 3. limit does not exist 4. limit = 1 4 5. limit = 1 8 correct 6. limit = 1 9 Explanation: Since ( √ x + 9 − 4)( √ x + 9 + 4) = (x + 9) − 16 = x − 7 , we see by rationalizing the numerator that √ x + 9 − 4 x − 7 = x − 7 (x − 7)( √ x + 9 + 4) = 1√ x + 9 + 4 provided x 6= 7. On the other hand, lim x→ 7 √ x + 9 + 4 = 8. Consequently, by properties of limits, lim x→ 7 √ x + 9 − 4 x − 7 exists and has limit = 1 8 . 002 10.0 points Find the value of lim x→−4 3 x + 4 ( 4 x2 + 8 − 1 6 ) . 1. limit = 1 12 2. limit = 1 4 3. limit does not exist 4. limit = 1 6 correct 5. limit = 1 8 Explanation: After the second term in the product is brought to a common denominator it becomes 24 − x2 − 8 6(x2 + 8) = 16 − x2 6(x2 + 8) . Thus the given expression can be written as 3(16 − x2) 6(x + 4)(x2 + 8) = 3(4 − x) 6(x2 + 8) so long as x 6= −4. Consequently, lim x→−4 3 x + 4 ( 4 x2 + 8 − 1 6 ) = lim x→−4 3(4 − x) 6(x2 + 8) . By properties of limits, therefore, limit = 1 6 . 003 10.0 points haas (ah28474) – HW01 – BERG – (56495) 2 Find the derivative of f when f(x) = 2 + cos x sin x . 1. f ′(x) = −1 + 2 cos x sin2 x correct 2. f ′(x) = 2 + sin x cos2 x 3. f ′(x) = −2 + cos x sin2 x 4. f ′(x) = 2 sin x + 1 cos2 x 5. f ′(x) = 2 sin x − 1 cos2 x 6. f ′(x) = sin x − 2 cos2 x 7. f ′(x) = 1 − 2 cosx sin2 x 8. f ′(x) = 2 − cos x sin2 x Explanation: By the quotient rule, f ′(x) = − sin2 x − cos x(2 + cos x) sin2 x = − sin2 x − cos2 x − 2 cos x sin2 x . But cos2 x + sin2 x = 1. Consequently, f ′(x) = −1 + 2 cosx sin2 x . 004 10.0 points Find the derivative of f when f(x) = 3x cos 2x − 8 sin 2x . 1. f ′(x) = −6x sin 2x − 16 cos 2x 2. f ′(x) = −16 cos 2x + 6x sin 2x 3. f ′(x) = 6x sin 2x − 13 cos 2x 4. f ′(x) = −6x sin 2x−13 cos 2x correct 5. f ′(x) = 16 cos 2x − 13x sin 2x Explanation: Using formulas for the derivatives of sine and cosine together with the Product and Chain Rules, we see that f ′(x) = 3 cos 2x − 6x sin 2x − 16 cos 2x = −6x sin 2x − 13 cos 2x . 005 10.0 points Find f ′(x) when f(x) = 1√ 6x − x2 . 1. f ′(x) = 3 − x (x2 − 6x)3/2 2. f ′(x) = x − 3 (6x − x2)3/2 correct 3. f ′(x) = 3 − x (x2 − 6x)1/2 4. f ′(x) = x − 3 (6x − x2)1/2 5. f ′(x) = 3 − x (6x − x2)3/2 6. f ′(x) = x − 3 (x2 − 6x)3/2 Explanation: By the Chain Rule, f ′(x) = − 1 2(6x − x2)3/2 (6 − 2x) . Consequently, f ′(x) = x − 3 (6x − x2)3/2 . haas (ah28474) – HW01 – BERG – (56495) 5 it thus follows by properties of limits that lim x→∞ √ 1 + 8 x + √ 1 − 6 x exists and has value 2. Consequently, again by properties of limits, the limit lim x→∞ √ x ( √ x + 8 − √ x − 6) exists and limit = 7 . 011 10.0 points Determine if the limit lim x→∞ ( 1 3 − e x 4ex + 3 ) exists, and if it does, compute its value. 1. limit = − 1 12 2. limit does not exist 3. limit = 1 3 4. limit = 1 12 correct 5. limit = −1 4 Explanation: Adding, we see that 1 3 − e x 4ex + 3 = ex + 3 3 (4ex + 3) , and so 1 3 − e x 4ex + 3 = 1 + 3e−x 3 (4 + 3e−x) after dividing by ex in both numerator and denominator. But lim x→∞ e−x = 0 , in which case lim x→∞ ( 1 + 3e−x ) = 1 , while lim x→∞ 3 ( 4 + 3e−x ) = 12 . Consequently, by properties of limits, the given limit exists and limit = 1 12 . 012 10.0 points Find the derivative of f when f(x) = e2x+5 + 3e−2x+5. 1. f ′(x) = 2e5 (e2x − 3e−2x) correct 2. f ′(x) = 2(e2x − 3e−2x) 3. f ′(x) = e5 (e2x + 3e−2x) 4. f ′(x) = e5 (e2x − 3e−2x) 5. f ′(x) = 2(e2x + 3e−2x) 6. f ′(x) = e5 (3e2x − e−2x) Explanation: After differentiation, f ′(x) = 2e2x+5 − 6e−2x+5. Consequently, f ′(x) = 2e5 (e2x − 3e−2x) . 013 10.0 points Determine f ′(x) when f(x) = e √ 5x+6. 1. f ′(x) = 5 2 e √ 5x+6 √ 5x + 6 correct haas (ah28474) – HW01 – BERG – (56495) 6 2. f ′(x) = 5 2 e √ 5x+6 √ 5x + 6 3. f ′(x) = 1 2 e √ 5x+6 √ 5x + 6 4. f ′(x) = 5e √ 5x+6 5. f ′(x) = 5e √ 5x+6 √ 5x + 6 Explanation: By the chain rule f ′(x) = e √ 5x+6 ( d dx √ 5x + 6 ) = 5 2 e √ 5x+6 √ 5x + 6 . 014 10.0 points Find the derivative of f when f (θ) = ln (cos 3θ) . 1. f ′ (θ) = − 1 sin 3θ 2. f ′ (θ) = −3 cot 3θ 3. f ′ (θ) = 3 cos 3θ 4. f ′ (θ) = cot 3θ 5. f ′ (θ) = −3 tan 3θ correct 6. f ′ (θ) = 3 tan 3θ Explanation: By the Chain Rule, f ′(θ) = 1 cos(3θ) d dθ (cos 3θ) = −3 sin 3θ cos 3θ . Consequently, f ′(θ) = −3 tan 3θ . 015 10.0 points Differentiate the function f(x) = cos(ln 2x) . 1. f ′(x) = −2 sin(ln 2x) x 2. f ′(x) = sin(ln 2 x) x 3. f ′(x) = 1 cos(ln 2 x) 4. f ′(x) = −sin(ln 2 x) x correct 5. f ′(x) = 2 sin(ln 2x) x 6. f ′(x) = − sin(ln 2 x) Explanation: By the Chain Rule f ′(x) = −sin(ln 2x) x . 016 10.0 points Determine f ′(x) when f(x) = e(4 ln(x 2)) . 1. f ′(x) = 1 x e4 ln(x 2) 2. f ′(x) = e8/x 3. f ′(x) = 7x8 4. f ′(x) = 8x7 correct 5. f ′(x) = 8(lnx)e4 ln(x 2) haas (ah28474) – HW01 – BERG – (56495) 7 6. f ′(x) = 4 x2 e4 ln(x 2) Explanation: Since r lnx = lnxr , eln x = x , we see that f(x) = e(ln x 8) = x8 . Consequently, f ′(x) = 8x7 . 017 10.0 points Find the derivative of f when f(x) = 4 (2x) − 8 log2 x . 1. f ′(x) = 4 (2x) ln 2 − 8 ln 2 x 2. f ′(x) = 4 (2x) ln 2 − 8 log2 x 3. f ′(x) = 4 (2x) ln 2 − 8 x 4. f ′(x) = 4 (2x) − 8 x ln 2 5. f ′(x) = 4 (2x) ln 2 − 8 x ln 2 correct Explanation: Note that 2x = ex ln 2, log2 x = lnx ln 2 . By the chain rule, therefore, f ′(x) = 4ex ln 2 ln 2 − 8 x ln 2 . Consequently, f ′(x) = 4 (2x) ln 2 − 8 x ln 2 . 018 10.0 points Find the nth-derivative of f when f(x) = 3 ln(4x + 3). 1. f (n)(x) = (−1)n−1(n − 1)! 3 · 4 n (4x + 3)n correct 2. f (n)(x) = (−1)n−1(n − 1)! 3 (4x + 3)n 3. f (n)(x) = (n − 1)! 3 · 4 n (4x + 3)n 4. f (n)(x) = (−1)n(n − 1)! 3 · 4 n (4x + 3)n 5. f (n)(x) = (−1)n−1n! 3 · 4 n (4x + 3)n Explanation: Applying the Chain Rule successively we see that f (1)(x) = 12 4x + 3 , f (2)(x) = − 48 (4x + 3)2 , and f (3)(x) = 384 (4x + 3)3 , f (4)(x) = −2·3 3 · 4 4 (4x + 3)4 Continuing the successive application of the Chain Rule we see that f (4)(x) = −2 · 3 3 4 4 (4x + 3)4 = − 3! 3 · 4 4 (4x + 3)4 , f (5)(x) = 2 · 3 · 4 3 4 5 (4x + 3)5 = 4! 3 · 45 (4x + 3)5 , and so on. Thus f (n)(x) =        −(n − 1)! 3 · 4 n (4x + 3)n , n even, (n − 1)! 3 · 4 n (4x + 3)n , n odd.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved