Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Statistical Distributions - Thermodynamics and Statistical Mechanics - Lecture Slides, Slides of Thermodynamics

The key points in the lecture slides of the Thermodynamics and Statistical Mechanics are:Statistical Distributions, Multiple Outcomes, Distinguishable Particles, Degenerate States, Boltzmann Statistics, Probable Distribution, Lagrange Multipliers, Constraints, Boltzmann Distribution, Quantum Statistics

Typology: Slides

2012/2013

Uploaded on 05/06/2013

anupama
anupama 🇮🇳

4.5

(17)

98 documents

1 / 39

Toggle sidebar

Related documents


Partial preview of the text

Download Statistical Distributions - Thermodynamics and Statistical Mechanics - Lecture Slides and more Slides Thermodynamics in PDF only on Docsity! Thermodynamics and Statistical Mechanics Statistical Distributions Docsity.com Multiple Outcomes NN N N NNN Nw i i i = ∏ = ⋅⋅⋅⋅ = ∑ ! ! !!! ! 321 Distinguishable particles Docsity.com Most Probable Distribution ∑∑∑ ∑∑ ∏ === == = +−+= −+= = == n j j n j jj n j jjB n j j n j jjB B n j j N j BB NNNgNNw NgNNw w N g Nww j 111 11 1 lnln!lnln !ln ln!lnln 0ln :Instead ! ! where0 δ δ Docsity.com Most Probable Distribution ∑ ∑ ∑ = = =         =                 −+−= +−+= n j j j jB n j j j jjjjB n j jjjB N g Nw N N NNgNw NgNNw 1 1 1 ln)(ln )1ln)(ln(ln )1ln(ln!lnln δδ δ δδ Docsity.com Constraints (Lagrange Multipliers) 0)()(ln)( 0ln 0ln 111 11 11 =−−        =      −− == = ∑∑∑ ∑∑ ∑∑ === == == n j jj n j j n j j j j n j jj n j jB n j jj n j j B NN N g N NNw UNNN w δεβδαδ εβαδ ε δ Docsity.com Quantum Statistics • Indistinguishable particles. 1. Bose-Einstein – Any number of particles per state. Particles with integer spin:0,1,2, etc 2. Fermi-Dirac – Only one particle per state: Particles with integer plus ½ spin: 1/2, 3/2, etc Docsity.com Bose-Einstein •At energy εi there are Ni particles divided among gi states. How many ways can they be distributed? Consider Ni particles and gi – 1 barriers between states, a total of Ni + gi – 1 objects to be arranged. How many arrangements? Docsity.com Bose-Einstein ∑∑∑ ∏ === = −−−−+= − −+ =⋅⋅⋅ − −+ = n j j n j j n j jjBE n j jj jj nBE jj jj j gNgNw gN gN NNNw gN gN w 111 1 21 )!1ln(!ln)!1ln(ln )!1(! )!1( ),,( )!1(! )!1( Docsity.com Constraints (Lagrange Multipliers) 01ln 0ln 0ln 1 11 =−−        + =         −−        + =      −− ∑ ∑∑ = == j j j n j j j jj j n j jj n j jBE N g N gN N NNw βεα βεαδ εβαδ Docsity.com Bose-Einstein j j j j j j j j j j f eg N e N g e N g N g j jj = − = −==+ =−−        + + ++ 1 1 11 01ln βεα βεαβεα βεα Docsity.com Boltzmann Distribution j j e fe g N g N j j j j j j βεα βεα βεα + −− === −−=        1 ln Docsity.com Fermi-Dirac ∑ ∑ ∑∑∑ = = === −−−−= −+−−− +−−= −−−= n j jjjjjjjjFD jjjjjj n j jjjjjjFD n j jj n j j n j jFD NgNgNNggw NgNgNg NNNgggw NgNgw 1 1 111 )]ln()(lnln[ln )]()ln()( lnln[ln )!ln(!ln!lnln Docsity.com Fermi-Dirac ∑ ∑ ∑ = = =                 − =         − − +−+−−= −−−−= n j j jj jFD n j jj jj jj j j jjFD n j jjjjjjjjFD N Ng Nw Ng Ng Ng N N NNw NgNgNNggw 1 1 1 lnln )( )( )ln(lnln )]ln()(lnln[ln δδ δδ Docsity.com Constraints (Lagrange Multipliers) 01ln 0ln 0ln 1 11 =−−        − =         −−        − =      −− ∑ ∑∑ − == j j j n j j j jj j n j jj n j jFD N g N Ng N NNw βεα βεαδ εβαδ Docsity.com Boltzmann Distribution j j egeN fe g N g N jj j j j j j j βεα βεα βεα −− −− = == −−=        stateper particles ofNumber ln Docsity.com Boltzmann Distribution ∑ ∑ ∑∑ = − − = − − = −− = −− = = == = n j j j j n j j n j j n j j jj j j j j j eg eg NN eg Ne egeNN egeN 1 1 11 βε βε βε α βεα βεα Docsity.com Partition Function Z eg NN Zeg eg eg NN j j j j j j n j j n j j j j βε βε βε βε − = − = − − = = = ∑ ∑ FunctionPartition 1 1 Docsity.com Ideal Gas ∫ ∫ ∫∫ ∞ − ∞ − ∞ −∞ −       =       =       ==       = 0 21 2/3 2/3 22 0 21 2/3 2/3 22 0 21 2/3 220 2/3 22 12 4 )()(12 4 2 4 )( 2 4 )( dxexmVZ demVZ demVdgeZ dmVdg x βπ βεβε βπ εε π εε εε π εε βε βεβε     Docsity.com Gamma Function ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 3 0 21 2 1 2 1 2 1 2 3 0 1 2 3 0 21 π π =Γ= =ΓΓ=Γ +Γ=Γ =ΓΓ= ∫ ∫∫ ∞ − ∞ −−∞ − dxex nnn dxexndxex x xnx Docsity.com Partition Function for Ideal Gas N UZ CZ CmVZ dxexmVZ x == ∂ ∂ − −= =      =       = ∫ ∞ − ββ β ββ π π βπ 2 3ln ln 2 3lnln 1 2 2 4 12 4 2/32/3 2/3 22 0 21 2/3 2/3 22   Docsity.com Quantum Statistics •When taken to classical limit quantum results must agree with classical. B-E and F-D must approach Boltzmann in classical limit. What is that limit? •Low particle density! Then distinguishability is not a factor. Docsity.com Classical limit kT β e f ef e f g N j j j j j j j j 1 Boltzmann as Same 1 1,1For 1 1 = ≅ >><< ± == + + + βεα βεα βεα Docsity.com Quantum Results Dirac-Fermi Einstein-Bose 1 1 + − ± == kT j j j j ee f g N ε α Docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved