Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Carbon-Carbon Bond Forming Reactions with Silacycles: Aldol and Asymmetric Aldol Reactions, Study notes of Organic Chemistry

The application of silacycles in carbon-carbon bond forming reactions, specifically focusing on aldol and asymmetric aldol reactions. The historical background, bond lengths and angles, and mechanisms of these reactions. It also includes important observations and synthesis of chiral silane reagents for asymmetric allylation and crotylation reactions.

Typology: Study notes

Pre 2010

Uploaded on 07/28/2009

koofers-user-xyu-2
koofers-user-xyu-2 🇺🇸

10 documents

1 / 68

Toggle sidebar

Related documents


Partial preview of the text

Download Carbon-Carbon Bond Forming Reactions with Silacycles: Aldol and Asymmetric Aldol Reactions and more Study notes Organic Chemistry in PDF only on Docsity! Strain Release Lewis Acidity: Recent Advances In Asymmetric Synthesis Aparajita Banerjee Organic Seminar December 13, 2006 M Nu . . D C A B M A B Nu C D Outline  Introduction - Basic Principle  Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction  Application In Natural Product Synthesis  Strain Release Chemistry With Al  Conclusion Example of Strain Release Lewis Acidity  Aldol Reaction Denmark, S. E.; Griedel, B. D.; Coe, D. M. J. Org. Chem. 1993, 58, 988 Matsumoto. K.; Oshima, K.; Utimoto, K. J. Org. Chem. 1994, 59, 7152 Acyclic Analogue Cyclic Analogue  Allylation of Aldehyde Dual Activation of the silane and aldehyde Acyclic Analogue Cyclic Analogue O Si H Ph Ph H3CO O Si t-Bu H3C CH3 + H O Ph C6D6 / 1M 20 oC 120 h No Reaction CH3 + H O Ph CDCl3 / 1M 20 oC 2.2 h 94% H3CO O Si t-Bu CH3 E:Z (95:5) H3C O Ph OH CH3 H3C O Ph CH3 OH + 95:5 Ph Si H3C CH3 + H O Ph 160 oC 24 h No Reaction Ph Si + H O Ph 130 oC 12 h Ph O Si Ph aq. HCl MeOH Ph OH 85% SiMe O O MeO CH3 CH3 H Ph Historical Background Perozzi, E. F.; Michalak, R. S.; Figuly, G. D.; Stevenson, W. H. III, Bess, D. B.; Ross, M. R.; Martin, J. C. J. Org. Chem. 1981, 46, 1049 Stevenson III, W. H.; Wilson, S.; Martin, J.C.; Farnham, W. B. J. Am. Chem. Soc. 1985, 107, 6340 Si O O Si 4 coordinated Distorted Tetrahedral Si 5 coordinated Trigonal Bipyramidal Si O O Endocyclic C-Si-O  ~ 94.4o Endocyclic C-Si-O  ~ 85.3o Si O O CF3 CF3 CF3 CF3 O Si O F3C CF3 F3C CF3 Li PhLi A B Hypervalency of Silicon ∆E > 200 kCal/mol 10 electrons 4 orbitals ? Hypervalent Bonding Concept of 3c-4e bond Alekseev, N. V.; Heller, G.; Niedenzu, K.; Tandura, S. N.; Trofimenko, S.; Vorkonkov, M. G. Top. Curr. Chem. 1986, 131, 99 Involved in the formation of 5 bonds Si Possibility 1 3S 3p 3d sp2 dp hybridize sp3d Energy p d sp2 sp2p Possibility 2 ‘Strain Release Lewis Acidity’ Denmark, S. E.; Jacobs, R. T.; Dai-Ho, G.; Wilson, S. Organometallics 1990, 9, 3015 If ∠A-X-B less than 94.40 Further distortion in tetrahedral geometry  more strained  greater Lewis acidity A X B C D X = Si, ∠A-X-B = 94.40 ? by Germanium Bond Length: Ge–O  1.989 Å Ge–C  1.951 Å Bond Angle: Endocyclic C-Si-O  ~ 83.5o (Ideal  90o) Ge O O F3C CF3 F3C CF3 Bond Length: Ge–O  1.786 Å Ge–C  1.898 Å Bond Angle: Endocyclic C-Ge-O  ~ 91.5o (Ideal  109.5o) Expected More strained than Si analogue Longer than expected Release of strain Expected: Ge analogue much more Lewis acidic than Si analogue Ge O O CF3F3C CF3 F3C Et4N     Ge Ge O O O O Distorted Tetrahedral Trigonal Bipyramidal Average increase in Bond Length: Gei–O  0.203 Å Ge–C  0.053 Å Enhanced Lewis Acidity by Germanium Analogue Denmark, S. E.; Jacobs, R. T.; Dai-Ho, G.; Wilson, S. Organometallics 1990, 9, 3015 Ge analogue much more Lewis acidic than Si analogue : Proof  Intramolecular Ene Reaction:  Intramolecular [4+2] Cycloaddition Reaction: No Reaction with Si Analogue No Reaction with Si Analogue Ge O O F3C CF3 F3C CF3 1 CHO CH3H3C H3C CH3 1 CH2Cl2/ 20 oC OH H3C CH3 H3C + H3C CH3 H3C OH trans cis CH3 H O SCH3 1 CH2Cl2 / 20 oC 63% O H H CH3 SCH3 E-isomer trans-isomer Si  More explored because of its practical applicability Different Silacycles  4-Membered silacycle  Ring spans along axial-equatorial  Ring spans along axial-equatorial X, Y  O, O X, Y  O, N X, Y  N, N Si Si Nu 4-coordinated 5-coordinated Nu Si X Y Si X Y Nu 4-coordinated 5-coordinated Nu Denmark, S. E.; Griedel, B. D.; Coe, D. M. J. Org. Chem. 1993, 58, 988 Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920  5-Membered silacycle Si Directed Aldol Reaction Myers, A. G.; Widdowson, K. L. J. Am. Chem. Soc. 1990, 112, 9672 Asymmetric Version:  Without apparent Catalyst  Pericyclic transition state OSi(CH2CH3)2 N H3C CH3 CH3 H O H OSi(CH2CH3)2O CH3 H3C CH3 OSi(CH2CH3)2O CH3 H3C CH3 + + CH2Cl2 -30 oC 1 anti syn 1.8:1 N O SiO CH3 CH3 H CH3 H + H O hexane 23 oC, 10 h N O O O Si H3C CH3 CH3 H N O O O Si H3C CH3 CH3 H + anti-isomer syn-isomer39:1 yield: 77% (for anti-isomer) 2 Mechanism: Myers, A. G.; Kephart, S. E.; Chen, H. J. Am. Chem. Soc. 1992, 114, 7922 Path A Path B Si Directed Aldol Reaction Si R O O N H CH3 R Si R O O H R = CH3 pseudo rotation SiO N O R O H H CH3 R Si O N O O H CH3 H R R N H H3C O R Si R O O N H CH3 R Si R H CH3 R O N O O H R = CH3 pseudo rotation SiO N O R O H H CH3 R Si O N O O H CH3 H R R Si Directed Aldol Reaction Mechanism: Path A Path B  10 fold rate acceleration for silacyclopentane  2X106 fold rate acceleration for silacyclobutane Path A: Operative Si R O O N H CH3 R Si R H CH3 O N O O H R = (CH2)3 R= (CH2)4 pseudo rotation SiO N O R O H H CH3 R Si O N O O H CH3 H R R R Si R O O N H CH3 R Si R O O H R = (CH2)3 R = (CH2)4 pseudo rotation SiO N O R O H H CH3 R Si O N O O H CH3 H R R N H H3C O R Expected Angle: 90o Expected Angle: 90o Aldol Reaction of Silyl-enol derivative of Ester Denmark, S. E.; Griedel, B. D.; Coe, D. M. J. Org. Chem. 1993, 58, 988 Denmark, S. E.; Griedel, B. D.; Coe, D. M. Schnute, M. E. J. Am. Chem. Soc. 1994, 116, 7026 Cyclic Analogue Acyclic Analogue t1/2 entry R1 R2 R3 R4 (min) 1 2 3 4 t-butyl t-butoxy t-butyl t-butyl 5 33 2100 - CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 O MeO Si t-Bu CH3H3C CH3 + Ph H O 1M C6D6 120 h No Reaction Si O R2 R3 R4R1O PhCHO C6D6, 1M 20 oC O O R1O R3 R 4 Ph Si R2 O Me Me Si MeO Me + O H SiMe O O MeO CH3 CH3 H Ph O MeO Si OCHPh H3C CH3 CH3 O Ph H O O MeO H3C CH3 Si Me Path A Intramolecular silicon group transfer O O MeO H3C CH3 Si H3C PhCHO Path B Intermolecular silicon group transfer Open TS Closed TS Crossover Experiment  Path A Aldol Reaction: Asymmetric Version Proposed Asymmetric Variant of Aldol Reaction Denmark, S. E.; Griedel, B. D. J. Org. Chem. 1994, 59, 5136 O Me Si X R*O RCHO Si O O X Me H R1 OR* O O Si Me X R1 O OH OR* X Me R*OH + HF, THF Si Cl Cl R1 With Chiral Enoxysilacyclobutane derived from ester Denmark, S. E.; Griedel, B. D. J. Org. Chem. 1994, 59, 5136 Important Observations: - Unaaceptably low yield due to large component C-silyl esters and (Z)-ketene acetal isomers X O CH3 Si Y Si CH3X O Y a b 1a, b: X = OCH3, Y = (-)-8-phenylmenthol 2a, b: X = OCH3, Y = (-)-trans-2-cumylcyclohexanol oxygen silylated carbon-silylated Aldol Reaction: Asymmetric Version entry ketene temp, °C syni/anti ee (%) acetal 1 1 -60 >99/1 95 2 2 -60 >99/1 97 CH3O O Si R*O CH3 + PhCHO 1) 0.5M, toluene 2) 1 h, HF/THF/H2O R*OH 60/40 Oxygen vs Carbon-silyl 80/20 E/Z O PhH3CO OH CH3 syn-isomer 1,2 vs 1,4-addition: Why the observed regiochemistry? Denmark, S. E.; Griedel, B. D.; Coe, D. M. Schnute, M. E. J. Am. Chem. Soc. 1994, 116, 7026 O Si CH3O H CH3 t-Bu + O H 20 °C O CH3O H CH3 Si t-Bu H + O H O H3CO Si R 1,2-addition 1,4-addition C6D6 t1/2 = 8 min 84% 100:0 SiR1 O O MeO CH3 CH3 R2 SiR1 O MeO CH3 CH3 6 Membered TS Eneregetically Accessible 8 Membered TS O R2 Addition To α,β-Unsaturated Carbonyl Outline  Introduction - Basic Principle  Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction  Application In Natural Product Synthesis  Strain Release Chemistry With Al  Conclusion Allylation Reaction: With Four Membered Silacycle Acyclic Analogue Cyclic Analogue  Allyl-alkoxy silacyclobutane more reactive than Allyl-phenyl silacyclobutane Matsumoto. K.; Oshima, K.; Utimoto, K. J. Org. Chem. 1994, 59, 7152 Ph Si H3C CH3 + H O Ph 160 oC 24 h No Reaction Ph Si + H O Ph 130 oC 12 h Ph O Si Ph aq. HCl MeOH Ph OH 85% + H O Ph 1. 100 oC 12 h Ph OHSi O 2. aq. HCl 83%  Introduction of the Asymmetry: Choice of Chiral auxiliary : Si O O Cl H3C H3C H3C H3C  Ring induces: - reactivity - chirality Chiral 1,2-amino alcohols OH NH Me Me Ph Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920 Chiral 1,2-diamines NHBn NHBn Inactive Catalyst Asymmetric Allylation Reaction With Five Membered Silacycle O Si O Cl Me Me Me Me O Si O Me Me Me Me Cl N Si N Cl Me Me acyclic six-membered A B CO Si O Me Me Me Me Cl + O HPh Toluene 23 °C 52% OH Ph 1 Asymmetric Allylation Reaction With Five Membered Silacycle Synthesis of Chiral Silane Reagent: From Chiral 1,2-amino alcohols From Chiral 1,2-diamines Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920 Kubota, K.; Leighton, J. L. Angew. Chem. Int. Ed. 2003, 42 , 946 NH NH p-BrC6H4 p-BrC6H4 (R,R) CH2Cl2 88% Cl3Si+ DBU N Si N Cl p-BrC6H4 p-BrC6H4 (R,R) 2 (S,S) OH NH Me Me Ph N Si O Cl CH3 H3C Ph CH2Cl2 88% Cl3Si + Et3N 2:1 dr 1 Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 7920 Kubota, K.; Leighton, J. L. Angew. Chem. Int. Ed. 2003, 42 , 946 Asymmetric Allylation Reaction With Five Membered Silacycle With aldehyde: 2 N Si O Cl CH3 H3C Ph O Ht-Bu Toluene OH t-Bu+ 96% ee - 10 oC, 2 h (S) (S,S) 80% 1 N Si N Cl p-BrC6H4 p-BrC6H4 + O HPh - 10 °C, 20 h OH Ph CH2Cl2 (R,R) S-isomer 98% ee 69% Proposed mechanism: Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686  Ketone derived Benzoylhydrazone Asymmetric Allylation Reaction With Five Membered Silacycle N Si N O Ph H3C H Ph N O Cl Me N Si N O Ph H3C Ph N O HCl Me N Si N O Ph H3C Ph HCl NO Me N HPh NHBz N Si O Cl CH3 H3C Ph (S,S) + (1.5 equiv) N CH3Ph NHBz R1 + CHCl3 40 oC, 24 hN Si O Cl CH3 H3C Ph NHNHBzR2 86%, 90% ee Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686  Ketone derived Benzoylhydrazone Asymmetric Allylation Reaction With Five Membered Silacycle OSi N N Ph O N HPh CH3 CH3 Cl + - Ph H Ph N Si O OMe CH3 H3C Ph (S,S) + N Me N Me Ph PhO N Me N H Ph PhO NR N Si O Cl CH3 H3C Ph + N Si O Cl Ph CH3 H3C Ph + N H N H Ph PhO White Powder 1 Rabbat, P. M. A.; Valdez, S. C.; Leighton, J. L. Org. Lett. 2006, ASAP ? No reaction  With Aldimine H3CO H2N CH3 N Si O Cl CH3 H3C Ph (S,S)-1 Asymmetric Allylation Reaction With Five Membered Silacycle R1 OSi N O N HPh CH3 CH3 Cl + - R H HN O R3 R2 NH HO N HR (S,S)-1 N H HO CH3 HN HO CH3 Et2O, 23 oC 20 h 85% (S,S)-1 92% ee (S,S)-1 N Si O Cl CH3 H3C Ph N R2R1 R1 + NH O R3 OSi N N R3 O N HPh CH3 CH3 Cl + - R2 R1 HN O R3 R2 NH Outline  Introduction - Basic Principle  Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction  Application In Natural Product Synthesis  Strain Release Chemistry With Al  Conclusion Different Approach in Carbon-Carbon Bond Forming Reaction N Si O Me Ph Me Cl Nucleophile present in the silane moiety N Si O Me Ph Me Cl Ph + External Nucleophile ? Yes Enantioselective Friedel-Crafts Alkylation Enantioselective [3 + 2] Acylhydrazone- Enol Ether Cycloaddition N Si O Cl Ph CH3 H3C Ph + N R2R2 NHCOR ArH ? R 1 Ar R2 NHNHCOR N Si O Cl Ph CH3 H3C Ph + N HR2 NHCOR ? EDG HN N R1 EDG O R Enantioselective Friedel-Crafts Alkylation Shirakawa, S.; Berger, R.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 2858 OSi N N Ph O N HPh CH3 CH3 Cl + - Ph H Ph ArH ArH Bulky Phenyl Group X Plausible Mechanism : + N Hi-PrO2C NHBz ArH (1.5 equiv) (S,S)-1 Toluene, -20 oC, 20 h Ari-PrO2C NHNHBz OSi N Ph O N HPh CH3 CH3 ClH + - Ph H Ph N Si O Cl CH3 H3C Ph N HPh + NH O Ph (S,S)-1 (~2:1) dr Entry ArH Yield(%) ee(%) 1 65 95 NMe2 N H NO2 N S Bn OMe 2 3 4 74 76 91 88 88 89 Outline  Introduction - Basic Principle  Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction  Application In Natural Product Synthesis  Strain Release Chemistry With Al  Conclusion Tandem Aldol-Allylation Reaction  Potential Problem in Polyketide Synthesis: Oligomerization  Possible Solution: Termination by allylation Wang, X.; Meng, Q.; Nation A. J.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 10672 O Si O Me Me Me Me O 1  Reaction: + OH OH Ph O HPh 1 Toluene 40 °C, 24h OH Ph 60%; 11:1 dr 29% O HR + H3C O MLn n OH OH O CH3 CH3 HR n-1 OH OH OH CH3 CH3 R n-1 CH3 O HR + H3C O Ln M CH3 n Tandem Aldol-Allylation Reaction: Extension O Si O O H3C H3C H3C H3C O Si O O H3C H3C H3C H3C Three Stereogenic Centres Four Stereogenic Centres Wang, X.; Meng, Q.; Nation A. J.; Leighton, J. L. J. Am. Chem. Soc. 2002, 124, 10672 Wang, X.; Meng, Q.; Nicholas, R. P.; Xu, Y.; Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 12806 O Si O O H3C H3C H3C H3C Tertiary Carbinol O HCy Toluene 40 °C, 60 hO Si OMe Me Me Me O OH OH Cy CH3 30%; 2:15 dr Toluene 40 °C, 60 h O Si OMe Me Me Me O H3C OH OH Cy CH3 71%; 10:1 dr Cy H O O HCy Toluene 40 °C, 80 h O Si OMe Me Me Me O OH OH Cy CH3 81%; 66:5:24:7:4 dr CH3 H3C CH3 Toluene O Si OMe Me Me Me O O HCy + CH3 CH3 Cy 58%; 14:1 dr CH3 CH3 reflux, 50 h HO HO Schmidt, D. R.; O’Malley, S. J.; Leighton, J. L. J. Am. Chem. Soc. 2003, 125, 1190  With Alkyne Substrate: Access to Both syn and anti 1,5-diol BDPP: (2,4)-bis(diphenylphosphino)pentane Entry R1 R2 Ligand ds Yield 1 2 3 4 75 89 83 8212:88 90:10 20:80 80:20(R,R)-BDPP (S,S)-BDPP (R,R)-BDPP (S,S)-BDPP n-Pr n-Pr Ph Ph CH2CCH CH2CCH CH2CCH CH2CCH Tandem Silylformylation—Allylsilylation OH R2R1 O R1 R2 Si H O R1 R2 Si H H Si H t-Bu t-Bu t-Bu + + 10 mol % CuCl 10 mol % NaO-t-Bu 10 mol % Ligand Toluene, 12-24 h BA OH OH R i. 10 mol % ((PhO)3P)2Rh(CH3COOH)2.BF4, CO, Benzene, 60 oC ii. O R Si H t-Bu R = n-Pr, 55%, 78:22 dr R = Ph, 38%, 90:10 dr R = n-Pr, 80:20 dr R = Ph, 90:10 dr OH OH R i. 10 mol % ((PhO)3P)2Rh(CH3COOH)2.BF4, CO, Benzene, 60 oC ii. O R Si H t-Bu R = n-Pr, 44%, 79:21 dr R = Ph, 43%, 88:12 dr R = n-Pr, 80:20 dr R = Ph, 88:12 dr n-Bu4NF, THF, heat n-Bu4NF, THF, heat A B Outline  Introduction - Basic Principle  Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction  Application In Natural Product Synthesis  Strain Release Chemistry With Al  Conclusion Synthesis of (+)-SCH 351448 Bolshakov, S.; Leighton, J. L. Org. Lett. 2005, 7, 3809 - Isolated in 2000 - Low-density Lipoprotein receptor Retrosynthesis O OH O CH3 O HO O OHO O O H3C O NaO2C H3C CH3 CO2H H3C CH3 O OBn OH CH3 O NaO2C H3C CH3 O O O OBnOR O H3C CO2H H3C CH3 OO OH O CH3 CH3 OH3C H3C R = TBS A B C RCM 3 4 1 2 5 Steps B C A BnO2C O OBn OH OH H3C CH3 CH35 Synthesis of Dolabelide D: Retrosynthesis Park, P. K.; O’Malley, S. J.; Schmidt, D. R.; Leighton, J. L. J. Am. Chem. Soc. 2006, 128, 2796 - Isolated in 1997 - Important cytotoxic agent Dolabelide D Total Synthesis of Dolabelide D OAc O CH3 OH OH CH3 HO CH3 OH H3C OH O CH3 OAc n-Pr O RCM Esterification 2 3 OAc O H3C O OH CH3 CH3 OAc n-Pr OH OH CH3 OH HO 1 CH3 Dolabelide D A A B B CH3 CH3 PMBO O 4 O PMBO O OH CH3 CH3 5 + Park, P. K.; O’Malley, S. J.; Schmidt, D. R.; Leighton, J. L. J. Am. Chem. Soc. 2006, 128, 2796 Synthesis of Fragment 2 11% overall yield from 6 Total Synthesis of Dolabelide D i. 2 mol % [Rh(acetone)2(P(OPh)3)2]BF4 CO, Benzene, 60 oC ii. MeLi, Et2O, -78 to 23 oC 56% 4:1 dr HO Si HO n-Pr CH3 8 H Si H t-Bu OH n-Pr + 4 mol % CuCl, 4 mol % NaO-t-Bu, 4 mol % (R,R)-BDPP, Benzene 95% 4:1 dr H Si O t-Bu H3C n-Pr 6 7 Silylformylation Crotylsilylation O O OH CH3 OAc n-Pr CH3 2 8 steps t-Bu CH3H3C Synthesis of Dolabelide D  First Total Synthesis of Dolabelide D 14 linear steps from 6  2% Overall yield Park, P. K.; O’Malley, S. J.; Schmidt, D. R.; Leighton, J. L. J. Am. Chem. Soc. 2006, 128, 2796 Synthesis of Fragment 3 2 3+ 4 steps 1 Dolabelide D O H CH3 CH3 OPMB CH3 O PMBO O OH CH3 CH3 ent-13, CH2Cl2; NaH, PMBBr, THF, reflux 53% 6 Steps 12 14 5 Asymmetric Crotylation of aldehyde 4 5+ RO O CH3 OH CH3CH3 5 steps 3 OTESBMPOOAc N Si N p-BrC6H4 p-BrC6H4 Cl R 10 R = H 13 R = CH3 CH3 H O 10, CH2Cl2, - 20 oC 80 % 98 % ee CH3 OH CH3 CH3 PMBO 2 Steps O 9 11 4 Asymmetric Allylation of aldehyde Strain Release Lewis Acidity: Al(III) Complexes Catalyzed Asymmetric Acyl Halide - Aldehyde Cyclocondensation (AAC) Reactions  With Unsubstituted Acylhalide Nelson, S. G.; Spencer, K. L. Angew. Chem. Int. Ed. 2000, 39, 1323 O CH3Br O CH2CH2PhH + 10 mol% 1 i-Pr2NEt, CH2Cl2 - 50 oC 96% O O CH2CH2Ph 97% ee O CH3X O R1H + O O R1 X = Br, Cl O . [R1CHO.Al(III)] Al(III)-Catalyst R3N R3N R3(H)N.X N Al N N Bn CH3 i-Pri-Pr SO2CF3F3CO2S 1 Nelson, S. G.; Kim, B-K.; Peelen, T. J. J. Am. Chem. Soc. 2000, 122, 9318 Strain Release Lewis Acidity: Al(III) Complexes 1.DMF Complex Me N1 N3 Al N2 114.0° Plane angles (sum) = 358.6° Me N1 N3 Al N2 97.5° O H NMe2 99.8° N Al N N Bn CH3 i-Pri-Pr SO2CF3F3CO2S 1 Active Catalyst Inactive Catalyst Lacking a lewis basic residue in the ligand backbone Nelson, S. G.; Kim, B-K.; Peelen, T. J. J. Am. Chem. Soc. 2000, 122, 9318 Ligand defined distorted 4-coordinate geometryKey to reactivity  Strain Release Lewis Acidity: Al(III) Complexes N Al N CH3 TfTf 4 N Al N N Bn CH3 i-Pri-Pr TfTf 1 N Al N N CH3 CH3 TfTf 2 N Al O N CH3 TfTf 3 Total Synthesis of (-)-Malyngolide: (−)-Malyngolide - 4 Steps - 54% Overall Yield Nelson, S. G.; Zhonghui, W. J. Am. Chem. Soc. 2000, 122, 10470 N Al N N Bn CH3 i-Pri-Pr SO2CF3F3CO2S 1 OO H3C nC9H19 OH OHC OBn 10 mol % 1, EtCOBr, i-Pr2NEt, CH2Cl2, -50 oC O O H3C OBn OO H3C nC9H19 OH 85% 94% ee, 91:9 cis:trans 3 Steps 2 3 - An Antibiotic Outline  Introduction - Basic Principle  Application In Carbon—Carbon bond forming Reactions - 4 Membered Silacycle - Aldol and Asymmetric Aldol Reaction - Addition To α,β-Unsaturated Carbonyl - Allylation Reaction - 5 Membered Silacycle - Asymmetric Allylation/Crotylation Reaction - Enantioselective Friedel-Crafts Alkylation Reaction - Enantioselective [3 + 2] Cycloaddition Reaction - Asymmetric Diels Alder Reaction - Tandem Reaction  Application In Natural Product Synthesis  Strain Release Chemistry With Al  Conclusion Conclusion  Release of strain of four or five membered silacycles in going from four coordinated distorted tetrahedral geometry to five coordinated trigonal bipyramidal geometry  Constraining silicon in a small ring (four or five) causes Lewis acidity  Enhanced lewis acidity of five membered silacycles containing heteroatom than four membered silacycles  Application of the Lewis acidity of these silacycles in various type of carbon-carbon bond forming reactions  Lewis acidity of some neutral electron-rich Al (III) complex due to distorted ground state coordination geometry imposed by the ligand backbone
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved