Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Advanced Strength of Materials: Stresses on Planes and Stress Transformation, Study notes of Civil Engineering

A part of the lecture notes from an advanced strength of materials course. It covers the topics of stresses on arbitrary planes using the stress tensor, moment equilibrium, and stress transformation for both 2d and 3d cases. The document also includes formulas and equations related to stress components, direction cosines, and principal stresses.

Typology: Study notes

Pre 2010

Uploaded on 03/18/2009

koofers-user-hf4-1
koofers-user-hf4-1 🇺🇸

10 documents

1 / 18

Toggle sidebar

Related documents


Partial preview of the text

Download Advanced Strength of Materials: Stresses on Planes and Stress Transformation and more Study notes Civil Engineering in PDF only on Docsity! 8/27/2008 1 Advanced Strength of Materials Lecture 3 Review of last lecture l Elementary bending theory l Definition of stress at a point (Art. 2.1) l Stress notation (Art. 2.2) l Stress tensor (Art 2.3.1) l Differential equations of equilibrium (Art. 2.5) l Symmetry of stress components (Art 2.3.1) 8/27/2008 2 Stresses on a differential element Sign Convention for positive stress: Positive axis direction on a positive plane or Negative axis direction on a negative plane Stress Tensor ~ xx xy xz yx yy yz zx zy zz σ σ σ σ σ σ σ σ σ σ    =      Nine independent stress components Moment equilibrium gives: yzσ =xyσ = xzσ = ~ xx xy xz xy yy yz xz yz zz σ σ σ σ σ σ σ σ σ σ    =      Six independent stress components 8/27/2008 5 Stresses on arbitrary planes z y x xyσ xzσxxσ yzσ xzσ zzσ xzσ yzσ yyσ kji xzxyxxx σσσσ ++= kji pzpypxp σσσσ ++= yσ = zσ = Stresses on arbitrary planes xdA lds= 3 22 3 lm n d s= Volume of the tetrahedron- OABC ds dAzdAx dAy z x y O AC B Areas and Volume of Tetrahedron ydA = zdA = 8/27/2008 6 Stresses on arbitrary planes 0xFΣ = 3 22 3 0 x px xx x xy y xz z lmnB ds ds dA dA dA σ σ σ σ   + −     − − = lds mds nds Neglect Stresses on arbitrary planes px xx xy xzl m nσ σ σ σ= + + pyσ = pzσ = 0xFΣ = 0yFΣ = 0zFΣ = , , , 8/27/2008 7 Stresses on arbitrary planes px xx xy xz py xy yy yz xz yz zzpz σ σ σ σ σ σ σ σ σ σ σσ            =              Stress vector on a plane Stress at a point Normal and Shear Stresses on an Oblique Plane p px py pzi j kσ σ σ σ= + + N l i m j n k= + + pNσ = 8/27/2008 10 Stress Transformation for 3D Case x y z xyσ xzσ xxσ yzσ zzσ xzσ yyσ yzσ xyσ           zzyzxz yzyyxy xzxyxx σσσ σσσ σσσ We know stresses at point O with respect to xyz axes: O Stress Transformation for 3D Case           ZZYZXZ YZYYXY XZXYXX σσσ σσσ σσσ We seek stresses at point O with respect to XYZ axes: X Y Z x y z O 8/27/2008 11 Stress Transformation for 3D Case x y z X l1 m1 n1 Y Z e.g. l1= Cos θxX, l2= Cos θxY Define direction cosines Properties of Direction Cosines 2 2 2 1, 1,2,3i i il m n i+ + = = 2 2 2 1 2 3 1l l l+ + = 1 2 1 2 1 2 0l l m m n n+ + = 1 1 2 2 3 3 0l m l m l m+ + = 8/27/2008 12 Stress Transformation for 3D Case 1 1 1XN l i m j n k= + + X Xx Xy Xzi j kσ σ σ σ= + + 1 1 1Xx xx xy xzl m nσ σ σ σ= + + 1 1 1Xy xy yy yzl m nσ σ σ σ= + + 1 1 1Xz xz yz zzl m nσ σ σ σ= + + Normal on X-plane: Stress Transformation for 3D Case XX X X Nσ σ= • ( ) ( )1 1 1Xx Xy Xzi j k l i m j n kσ σ σ= + + • + + 1 1 1X x X y X zl m nσ σ σ= + + ( ) ( ) ( ) 1 1 1 1 1 1 1 1 1 1 1 1 xx xy xz xy yy yz xz yz zz l m n l l m n m l m n n σ σ σ σ σ σ σ σ σ = + + + + + + + + 8/27/2008 15 Principal Stresses and Directions pσ N xz y p Nσ σ= σ = principal stress Principal Stresses and Directions p px py pzi j kσ σ σ σ= + + N l i m j n k= + + px xx xy xzl m nσ σ σ σ= + + py xy yy yzl m nσ σ σ σ= + + pz xz yz zzl m nσ σ σ σ= + + p N li mj nkσ σ σ σ σ= = + + 8/27/2008 16 Principal Stresses and Directions xx xy xz xy yy yz xz yz zz l l m m n n σ σ σ σ σ σ σ σ σ σ            =               Linear Operator Vector Vector Scalar Principal Stresses and Directions When Lx is aligned along x, it is an eigenvalue problem Lx = λx Lx λx 8/27/2008 17 Principal Stresses and Directions This is not an acceptable solution, because Law of Direction Cosines 0 0 0 l m n        =            2 2 2 1l m n+ + = Trivial Solution of Lx = λx: Principal Stresses and Directions l For non-trivial solution 0 0 0 xx xy xz xy yy yz xz yz zz l m n σ σ σ σ σ σ σ σ σ σ σ σ  −         − =         −      0 xx xy xz xy yy yz xz yz zz σ σ σ σ σ σ σ σ σ σ σ σ − − = − Determinant
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved