Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

summary_to_passive_immun, Lab Reports of Infectious disease

summary_to_passive_immunization

Typology: Lab Reports

2020/2021

Uploaded on 05/28/2023

Omsimmm
Omsimmm 🇵🇭

42 documents

1 / 44

Toggle sidebar

Partial preview of the text

Download summary_to_passive_immun and more Lab Reports Infectious disease in PDF only on Docsity! SUMMARY In recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID- 19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus. KEYWORDS: COVID-19, emerging coronavirus, SARS-CoV-2, diagnosis, One Health, therapy, vaccines INTRODUCTION Over the past 2 decades, coronaviruses (CoVs) have been associated with significant disease outbreaks in East Asia and the Middle East. The severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) began to emerge in 2002 and 2012, respectively. Recently, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2), causing coronavirus disease 2019 (COVID-19), emerged in late 2019, and it has posed a global health threat, causing an ongoing pandemic in many countries and territories (1). Health workers worldwide are currently making efforts to control further disease outbreaks caused by the novel CoV (originally named 2019-nCoV), which was first identified in Wuhan City, Hubei Province, China, on 12 December 2019. On 11 February 2020, the World Health Organization (WHO) announced the official designation for the current CoV-associated disease to be COVID-19, caused by SARS-CoV-2. The primary cluster of patients was found to be connected with the Huanan South China Seafood Market in Wuhan (2). CoVs belong to the family Coronaviridae (subfamily Coronavirinae), the members of which infect a broad range of hosts, producing symptoms and diseases ranging from the common cold to severe and ultimately fatal illnesses, such as SARS, MERS, and, presently, COVID-19. SARS-CoV-2 is considered one of the seven members of the CoV family that infect humans (3), and it belongs to the same lineage of CoVs that causes SARS; however, this novel virus is genetically distinct. Until 2020, six CoVs were known to infect humans, including human CoV 229E (HCoV-229E), HCoV-NL63, HCoV-OC43, HCoV-HKU1, SARS-CoV, and MERS- CoV. Although SARS-CoV and MERS-CoV have resulted in outbreaks with high mortality, others remain associated with mild upper-respiratory-tract illnesses (4). Newly evolved CoVs pose a high threat to global public health. The current emergence of COVID-19 is the third CoV outbreak in humans over the past 2 decades (5). It is no coincidence that Fan et al. predicted potential SARS- or MERS-like CoV outbreaks in China following pathogen transmission from bats (6). COVID-19 emerged in China and spread rapidly throughout the country and, subsequently, to other countries. Due to the severity of this outbreak and the potential of spreading on an international scale, the WHO declared a global health emergency on 31 January 2020; subsequently, on 11 March 2020, they declared it a pandemic situation. At present, we are not in a position to effectively treat COVID-19, since neither approved vaccines nor specific antiviral drugs for treating human CoV infections are available (7,–9). Most nations are currently making efforts to prevent the further spreading of this potentially deadly virus by implementing preventive and control strategies. In domestic animals, infections with CoVs are associated with a broad spectrum of pathological conditions. Apart from infectious bronchitis virus, canine respiratory CoV, and mouse hepatitis virus, CoVs are predominantly associated with gastrointestinal diseases (10). The emergence of novel CoVs may have become possible because of multiple CoVs being maintained in their natural host, which could have favored the probability of genetic recombination (10). High genetic diversity and the ability to infect multiple host species are a result of high-frequency mutations in CoVs, which occur due to the instability of RNA-dependent RNA polymerases along with higher rates of homologous RNA recombination (10, 11). Identifying the origin of SARS-CoV-2 and the pathogen’s evolution will be helpful for disease surveillance (12), development of new targeted drugs, and prevention of further epidemics (13). The most common symptoms associated with COVID-19 are fever, SARS-CoV, along with 89% identity with ZC45 and ZXC21 SARS-related CoVs of bats (2, 31, 36). In addition, 82% identity has been observed between SARS-CoV-2 and human SARS-CoV Tor2 and human SARS-CoV BJ01 2003 (31). A sequence identity of only 51.8% was observed between MERS-related CoV and the recently emerged SARS-CoV-2 (37). Phylogenetic analysis of the structural genes also revealed that SARS-CoV-2 is closer to bat SARS-related CoV. Therefore, SARS-CoV-2 might have originated from bats, while other amplifier hosts might have played a role in disease transmission to humans (31). Of note, the other two zoonotic CoVs (MERS-related CoV and SARS- related CoV) also originated from bats (38, 39). Nevertheless, for SARS and MERS, civet cat and camels, respectively, act as amplifier hosts (40, 41). Coronavirus genomes and subgenomes encode six ORFs (31). The majority of the 5′ end is occupied by ORF1a/b, which produces 16 nsps. The two polyproteins, pp1a and pp1ab, are initially produced from ORF1a/b by a −1 frameshift between ORF1a and ORF1b (32). The virus-encoded proteases cleave polyproteins into individual nsps (main protease [Mpro], chymotrypsin-like protease [3CLpro], and papain-like proteases [PLPs]) (42). SARS-CoV-2 also encodes these nsps, and their functions have been elucidated recently (31). Remarkably, a difference between SARS-CoV-2 and other CoVs is the identification of a novel short putative protein within the ORF3 band, a secreted protein with an alpha helix and beta-sheet with six strands encoded by ORF8 (31). Coronaviruses encode four major structural proteins, namely, spike (S), membrane (M), envelope (E), and nucleocapsid (N), which are described in detail below. S Glycoprotein Coronavirus S protein is a large, multifunctional class I viral transmembrane protein. The size of this abundant S protein varies from 1,160 amino acids (IBV, infectious bronchitis virus, in poultry) to 1,400 amino acids (FCoV, feline coronavirus) (43). It lies in a trimer on the virion surface, giving the virion a corona or crown-like appearance. Functionally it is required for the entry of the infectious virion particles into the cell through interaction with various host cellular receptors (44). Furthermore, it acts as a critical factor for tissue tropism and the determination of host range (45). Notably, S protein is one of the vital immunodominant proteins of CoVs capable of inducing host immune responses (45). The ectodomains in all CoVs S proteins have similar domain organizations, divided into two subunits, S1 and S2 (43). The first one, S1, helps in host receptor binding, while the second one, S2, accounts for fusion. The former (S1) is further divided into two subdomains, namely, the N- terminal domain (NTD) and C-terminal domain (CTD). Both of these subdomains act as receptor-binding domains, interacting efficiently with various host receptors (45). The S1 CTD contains the receptor-binding motif (RBM). In each coronavirus spike protein, the trimeric S1 locates itself on top of the trimeric S2 stalk (45). Recently, structural analyses of the S proteins of COVID-19 have revealed 27 amino acid substitutions within a 1,273-amino- acid stretch (16). Six substitutions are located in the RBD (amino acids 357 to 528), while four substitutions are in the RBM at the CTD of the S1 domain (16). Of note, no amino acid change is seen in the RBM, which binds directly to the angiotensin-converting enzyme-2 (ACE2) receptor in SARS-CoV (16, 46). At present, the main emphasis is knowing how many differences would be required to change the host tropism. Sequence comparison revealed 17 nonsynonymous changes between the early sequence of SARS-CoV-2 and the later isolates of SARS-CoV. The changes were found scattered over the genome of the virus, with nine substitutions in ORF1ab, ORF8 (4 substitutions), the spike gene (3 substitutions), and ORF7a (single substitution) (4). Notably, the same nonsynonymous changes were found in a familial cluster, indicating that the viral evolution happened during person- to-person transmission (4, 47). Such adaptive evolution events are frequent and constitute a constantly ongoing process once the virus spreads among new hosts (47). Even though no functional changes occur in the virus associated with this adaptive evolution, close monitoring of the viral mutations that occur during subsequent human-to-human transmission is warranted. M Protein The M protein is the most abundant viral protein present in the virion particle, giving a definite shape to the viral envelope (48). It binds to the nucleocapsid and acts as a central organizer of coronavirus assembly (49). Coronavirus M proteins are highly diverse in amino acid contents but maintain overall structural similarity within different genera (50). The M protein has three transmembrane domains, flanked by a short amino terminus outside the virion and a long carboxy terminus inside the virion (50). Overall, the viral scaffold is maintained by M-M interaction. Of note, the M protein of SARS-CoV-2 does not have an amino acid substitution compared to that of SARS-CoV (16). E Protein The coronavirus E protein is the most enigmatic and smallest of the major structural proteins (51). It plays a multifunctional role in the pathogenesis, assembly, and release of the virus (52). It is a small integral membrane polypeptide that acts as a viroporin (ion channel) (53). The inactivation or absence of this protein is related to the altered virulence of coronaviruses due to changes in morphology and tropism (54). The E protein consists of three domains, namely, a short hydrophilic amino terminal, a large hydrophobic transmembrane domain, and an efficient C-terminal domain (51). The SARS-CoV-2 E protein reveals a similar amino acid constitution without any substitution (16). N Protein The N protein of coronavirus is multipurpose. Among several functions, it plays a role in complex formation with the viral genome, facilitates M protein interaction needed during virion assembly, and enhances the transcription efficiency of the virus (55, 56). It contains three highly conserved and distinct domains, namely, an NTD, an RNA-binding domain or a linker region (LKR), and a CTD (57). The NTD binds with the 3′ end of the viral genome, perhaps via electrostatic interactions, and is highly diverged both in length and sequence (58). The charged LKR is serine and arginine rich and is also known as the SR (serine and arginine) domain (59). The LKR is capable of direct interaction with in vitro RNA interaction and is responsible for cell signaling (60, 61). It also modulates the antiviral response of the host by working as an antagonist for interferon (IFN) and RNA interference (62). Compared to that of SARS-CoV, the N protein of SARS- CoV-2 possess five amino acid mutations, where two are in the intrinsically dispersed region (IDR; positions 25 and 26), one each in the NTD (position 103), LKR (position 217), and CTD (position 334) (16). nsps and Accessory Proteins Besides the important structural proteins, the SARS-CoV-2 genome contains 15 nsps, nsp1 to nsp10 and nsp12 to nsp16, and 8 accessory proteins (3a, 3b, p6, 7a, 7b, 8b, 9b, and ORF14) (16). All these proteins play a specific role in viral replication (27). Unlike the accessory proteins of SARS- CoV, SARS-CoV-2 does not contain 8a protein and has a longer 8b and shorter 3b protein (16). The nsp7, nsp13, envelope, matrix, and p6 and 8b accessory proteins have not been detected with any amino acid substitutions compared to the sequences of other coronaviruses (16). FIG 3 World map depicting the current scenario of COVID-19. Shown are countries, territories, or regions with reported confirmed cases of SARS-CoV-2 as of 13 May 2020. Different colors indicate different WHO designated geographical regions with the number of confirmed cases. The WHO region-wise total number of confirmed cases is depicted in different color strips. The leading information on the confirmed cases and deaths from all six WHO designated regions are depicted in circled balloons. The numbers of COVID-19 cases and fatalities on three major cruise ships are also depicted. (Based on data from the WHO at https://www.who.int/docs/default-source/coronaviruse/situation- reports/20200513-covid-19-sitrep-114.pdf?sfvrsn=17ebbbe_4; updated numbers of cases, deaths, and patients recovered can be found at https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/ bda7594740fd40299423467b48e9ecf6.) Initially, the epicenter of the SARS-CoV-2 pandemic was China, which reported a significant number of deaths associated with COVID-19, with 84,458 laboratory-confirmed cases and 4,644 deaths as of 13 May 2020 (Fig. 4). As of 13 May 2020, SARS-CoV-2 confirmed cases have been reported in more than 210 countries apart from China (Fig. 3 and and4)4) (WHO Situation Report 114) (25, 64). COVID-19 has been reported on all continents except Antarctica. For many weeks, Italy was the focus of concerns regarding the large number of cases, with 221,216 cases and 30,911 deaths, but now, the United States is the country with the largest number of cases, 1,322,054, and 79,634 deaths. Now, the United Kingdom has even more cases (226,4671) and deaths (32,692) than Italy. A John Hopkins University web platform has provided daily updates on the basic epidemiology of the COVID- 19 outbreak (https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/ bda7594740fd40299423467b48e9ecf6) (238). COVID-19 has also been confirmed on a cruise ship, named Diamond Princess, quarantined in Japanese waters (Port of Yokohama), as well as on other cruise ships around the world (239) (Fig. 3). The significant events of the SARS-CoV-2/COVID-19 virus outbreak occurring since 8 December 2019 are presented as a timeline in Fig. 5. FIG 5 Timeline depicting the significant events that occurred during the SARS-CoV-2/COVID-19 virus outbreak. The timeline describes the significant events during the current SARS-CoV- 2 outbreak, from 8 December 2019 to 13 May 2020. At the beginning, China experienced the majority of the burden associated with COVID-19 in the form of disease morbidity and mortality (65), but over time the COVID-19 menace moved to Europe, particularly Italy and Spain, and now the United States has the highest number of confirmed cases and deaths. The COVID-19 outbreak has also been associated with severe economic impacts globally due to the sudden interruption of global trade and supply chains that forced multinational companies to make decisions that led to significant economic losses (66). The recent increase in the number of confirmed critically ill patients with COVID-19 has already surpassed the intensive care supplies, limiting intensive care services to only a small portion of critically ill patients (67). This might also have contributed to the increased case fatality rate observed in the COVID-19 outbreak. Viewpoint on SARS-CoV-2 Transmission, Spread, and Emergence The novel coronavirus was identified within 1 month (28 days) of the outbreak. This is impressively fast compared to the time taken to identify SARS-CoV reported in Foshan, Guangdong Province, China (125 days) (68). Immediately after the confirmation of viral etiology, the Chinese virologists rapidly released the genomic sequence of SARS-CoV-2, which played a crucial role in controlling the spread of this newly emerged novel coronavirus to other parts of the world (69). The possible origin of SARS-CoV-2 and the first mode of disease transmission are not yet identified (70). Analysis of the initial cluster of infections suggests that the infected individuals had a common exposure point, a seafood market in Wuhan, Hubei Province, China (Fig. 6). The restaurants of this market are well-known for providing different types of wild animals for human consumption (71). The Huanan South China Seafood Market also sells live animals, such as poultry, bats, snakes, and marmots (72). This might be the point where zoonotic (animal-to-human) transmission occurred (71). Although SARS-CoV-2 is alleged to have originated from an animal host (zoonotic origin) with further human-to- human transmission (Fig. 6), the likelihood of foodborne transmission should be ruled out with further investigations, since it is a latent possibility (1). Additionally, other potential and expected routes would be associated with transmission, as in other respiratory viruses, by direct contact, such as shaking contaminated hands, or by direct contact with contaminated surfaces (Fig. 6). Still, whether blood transfusion and organ transplantation (276), as well as transplacental and perinatal routes, are possible routes for SARS-CoV-2 transmission needs to be determined (Fig. 6). From experience with several outbreaks associated with known emerging viruses, higher pathogenicity of a virus is often associated with lower transmissibility. Compared to emerging viruses like Ebola virus, avian H7N9, SARS-CoV, and MERS-CoV, SARS-CoV-2 has relatively lower pathogenicity and moderate transmissibility (15). The risk of death among individuals infected with COVID-19 was calculated using the infection fatality risk (IFR). The IFR was found to be in the range of 0.3% to 0.6%, which is comparable to that of a previous Asian influenza pandemic (1957 to 1958) (73, 277). one of the additional discharge criteria in laboratory-confirmed cases of COVID-19 (326). The COVID-19 pandemic does not have any novel factors, other than the genetically unique pathogen and a further possible reservoir. The cause and the likely future outcome are just repetitions of our previous interactions with fatal coronaviruses. The only difference is the time of occurrence and the genetic distinctness of the pathogen involved. Mutations on the RBD of CoVs facilitated their capability of infecting newer hosts, thereby expanding their reach to all corners of the world (85). This is a potential threat to the health of both animals and humans. Advanced studies using Bayesian phylogeographic reconstruction identified the most probable origin of SARS- CoV-2 as the bat SARS-like coronavirus, circulating in the Rhinolophus bat family (86). Phylogenetic analysis of 10 whole-genome sequences of SARS-CoV-2 showed that they are related to two CoVs of bat origin, namely, bat-SL- CoVZC45 and bat-SL-CoVZXC21, which were reported during 2018 in China (17). It was reported that SARS-CoV-2 had been confirmed to use ACE2 as an entry receptor while exhibiting an RBD similar to that of SARS-CoV (17, 87, 254, 255). Several countries have provided recommendations to their people traveling to China (88, 89). Compared to the previous coronavirus outbreaks caused by SARS-CoV and MERS-CoV, the efficiency of SARS-CoV-2 human-to- human transmission was thought to be less. This assumption was based on the finding that health workers were affected less than they were in previous outbreaks of fatal coronaviruses (2). Superspreading events are considered the main culprit for the extensive transmission of SARS and MERS (90, 91). Almost half of the MERS-CoV cases reported in Saudi Arabia are of secondary origin that occurred through contact with infected asymptomatic or symptomatic individuals through human-to-human transmission (92). The occurrence of superspreading events in the COVID-19 outbreak cannot be ruled out until its possibility is evaluated. Like SARS and MERS, COVID-19 can also infect the lower respiratory tract, with milder symptoms (27). The basic reproduction number of COVID-19 has been found to be in the range of 2.8 to 3.3 based on real-time reports and 3.2 to 3.9 based on predicted infected cases (84). Coronaviruses in Humans—SARS, MERS, and COVID-19 Coronavirus infection in humans is commonly associated with mild to severe respiratory diseases, with high fever, severe inflammation, cough, and internal organ dysfunction that can even lead to death (92). Most of the identified coronaviruses cause the common cold in humans. However, this changed when SARS-CoV was identified, paving the way for severe forms of the disease in humans (22). Our previous experience with the outbreaks of other coronaviruses, like SARS and MERS, suggests that the mode of transmission in COVID-19 as mainly human-to-human transmission via direct contact, droplets, and fomites (25). Recent studies have demonstrated that the virus could remain viable for hours in aerosols and up to days on surfaces; thus, aerosol and fomite contamination could play potent roles in the transmission of SARS-CoV-2 (257). The immune response against coronavirus is vital to control and get rid of the infection. However, maladjusted immune responses may contribute to the immunopathology of the disease, resulting in impairment of pulmonary gas exchange. Understanding the interaction between CoVs and host innate immune systems could enlighten our understanding of the lung inflammation associated with this infection (24). SARS is a viral respiratory disease caused by a formerly unrecognized animal CoV that originated from the wet markets in southern China after adapting to the human host, thereby enabling transmission between humans (90). The SARS outbreak reported in 2002 to 2003 had 8,098 confirmed cases with 774 total deaths (9.6%) (93). The outbreak severely affected the Asia Pacific region, especially mainland China (94). Even though the case fatality rate (CFR) of SARS-CoV-2 (COVID-19) is lower than that of SARS-CoV, there exists a severe concern linked to this outbreak due to its epidemiological similarity to influenza viruses (95, 279). This can fail the public health system, resulting in a pandemic (96). MERS is another respiratory disease that was first reported in Saudi Arabia during the year 2012. The disease was found to have a CFR of around 35% (97). The analysis of available data sets suggests that the incubation period of SARS-CoV-2, SARS-CoV, and MERS-CoV is in almost the same range. The longest predicted incubation time of SARS-CoV-2 is 14 days. Hence, suspected individuals are isolated for 14 days to avoid the risk of further spread (98). Even though a high similarity has been reported between the genome sequence of the new coronavirus (SARS-CoV-2) and SARS-like CoVs, the comparative analysis recognized a furin-like cleavage site in the SARS-CoV-2 S protein that is missing from other SARS-like CoVs (99). The furin-like cleavage site is expected to play a role in the life cycle of the virus and disease pathogenicity and might even act as a therapeutic target for furin inhibitors. The highly contagious nature of SARS-CoV-2 compared to that of its predecessors might be the result of a stabilizing mutation that occurred in the endosome-associated-protein-like domain of nsp2 protein. Similarly, the destabilizing mutation near the phosphatase domain of nsp3 proteins in SARS-CoV-2 could indicate a potential mechanism that differentiates it from other CoVs (100). Even though the CFR reported for COVID-19 is meager compared to those of the previous SARS and MERS outbreaks, it has caused more deaths than SARS and MERS combined (101). Possibly related to the viral pathogenesis is the recent finding of an 832- nucleotide (nt) deletion in ORF8, which appears to reduce the replicative fitness of the virus and leads to attenuated phenotypes of SARS-CoV-2 (256). Coronavirus is the most prominent example of a virus that has crossed the species barrier twice from wild animals to humans during SARS and MERS outbreaks (79, 102). The possibility of crossing the species barrier for the third time has also been suspected in the case of SARS-CoV-2 (COVID- 19). Bats are recognized as a possible natural reservoir host of both SARS- CoV and MERS-CoV infection. In contrast, the possible intermediary host is the palm civet for SARS-CoV and the dromedary camel for MERS-CoV infection (102). Bats are considered the ancestral hosts for both SARS and MERS (103). Bats are also considered the reservoir host of human coronaviruses like HCoV-229E and HCoV-NL63 (104). In the case of COVID-19, there are two possibilities for primary transmission: it can be transmitted either through intermediate hosts, similar to that of SARS and MERS, or directly from bats (103). The emergence paradigm put forward in the SARS outbreak suggests that SARS-CoV originated from bats (reservoir host) and later jumped to civets (intermediate host) and incorporated changes within the receptor-binding domain (RBD) to improve binding to civet ACE2. This civet-adapted virus, during their subsequent exposure to humans at live markets, promoted further adaptations that resulted in the epidemic strain (104). Transmission can also occur directly from the reservoir host to humans without RBD adaptations. The bat coronavirus that is currently in circulation maintains specific “poised” spike proteins that facilitate human infection without the requirement of any mutations or adaptations (105). Altogether, different species of bats carry a massive number of coronaviruses around the world (106). The high plasticity in receptor usage, along with the feasibility of adaptive mutation and recombination, may result in frequent interspecies transmission of coronavirus from bats to animals and humans (106). The pathogenesis of most bat coronaviruses is unknown, as most of these viruses are not isolated and studied (4). Hedgehog coronavirus HKU31, a Betacoronavirus, has been identified from amur hedgehogs in China. Studies show that hedgehogs are the reservoir of Betacoronavirus, and there is evidence of recombination (107). from newborn infants immediately postbirth; however, RT-PCR failed to confirm the presence of SARS-CoV-2 genetic material in the infants (283). Recent studies show that at least in some cases, preterm delivery and its consequences are associated with the virus. Nonetheless, some cases have raised doubts for the likelihood of vertical transmission (240,–243). COVID-19 infection was associated with pneumonia, and some developed acute respiratory distress syndrome (ARDS). The blood biochemistry indexes, such as albumin, lactate dehydrogenase, C-reactive protein, lymphocytes (percent), and neutrophils (percent) give an idea about the disease severity in COVID-19 infection (121). During COVID-19, patients may present leukocytosis, leukopenia with lymphopenia (244), hypoalbuminemia, and an increase of lactate dehydrogenase, aspartate transaminase, alanine aminotransferase, bilirubin, and, especially, D-dimer (244). Middle-aged and elderly patients with primary chronic diseases, especially high blood pressure and diabetes, were found to be more susceptible to respiratory failure and, therefore, had poorer prognoses. Providing respiratory support at early stages improved the disease prognosis and facilitated recovery (18). The ARDS in COVID-19 is due to the occurrence of cytokine storms that results in exaggerated immune response, immune regulatory network imbalance, and, finally, multiple-organ failure (122). In addition to the exaggerated inflammatory response seen in patients with COVID-19 pneumonia, the bile duct epithelial cell-derived hepatocytes upregulate ACE2 expression in liver tissue by compensatory proliferation that might result in hepatic tissue injury (123). CORONAVIRUSES IN ANIMALS AND ZOONOTIC LINKS—A BRIEF VIEWPOINT Coronavirus can cause disease in several species of domestic and wild animals, as well as humans (23). The different animal species that are infected with CoV include horses, camels, cattle, swine, dogs, cats, rodents, birds, ferrets, minks, bats, rabbits, snakes, and various other wild animals (20, 30, 79, 93, 124, 125, 287). Coronavirus infection is linked to different kinds of clinical manifestations, varying from enteritis in cows and pigs, upper respiratory disease in chickens, and fatal respiratory infections in humans (30). Among the CoV genera, Alphacoronavirus and Betacoronavirus infect mammals, while Gammacoronavirus and Deltacoronavirus mainly infect birds, fishes, and, sometimes, mammals (27, 29, 106). Several novel coronaviruses that come under the genus Deltacoronavirus have been discovered in the past from birds, like Wigeon coronavirus HKU20, Bulbul coronavirus HKU11, Munia coronavirus HKU13, white-eye coronavirus HKU16, night-heron coronavirus HKU19, and common moorhen coronavirus HKU21, as well as from pigs (porcine coronavirus HKU15) (6, 29). Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and porcine hemagglutinating encephalomyelitis virus (PHEV) are some of the coronaviruses of swine. Among them, TGEV and PEDV are responsible for causing severe gastroenteritis in young piglets with noteworthy morbidity and mortality. Infection with PHEV also causes enteric infection but can cause encephalitis due to its ability to infect the nervous system (30). Bovine coronaviruses (BoCoVs) are known to infect several domestic and wild ruminants (126). BoCoV inflicts neonatal calf diarrhea in adult cattle, leading to bloody diarrhea (winter dysentery) and respiratory disease complex (shipping fever) in cattle of all age groups (126). BoCoV-like viruses have been noted in humans, suggesting its zoonotic potential as well (127). Feline enteric and feline infectious peritonitis (FIP) viruses are the two major feline CoVs (128), where feline CoVs can affect the gastrointestinal tract, abdominal cavity (peritonitis), respiratory tract, and central nervous system (128). Canines are also affected by CoVs that fall under different genera, namely, canine enteric coronavirus in Alphacoronavirus and canine respiratory coronavirus in Betacoronavirus, affecting the enteric and respiratory tract, respectively (129, 130). IBV, under Gammacoronavirus, causes diseases of respiratory, urinary, and reproductive systems, with substantial economic losses in chickens (131, 132). In small laboratory animals, mouse hepatitis virus, rat sialodacryoadenitis coronavirus, and guinea pig and rabbit coronaviruses are the major CoVs associated with disease manifestations like enteritis, hepatitis, and respiratory infections (10, 133). Swine acute diarrhea syndrome coronavirus (SADS-CoV) was first identified in suckling piglets having severe enteritis and belongs to the genus Alphacoronavirus (106). The outbreak was associated with considerable scale mortality of piglets (24,693 deaths) across four farms in China (134). The virus isolated from the piglets was almost identical to and had 95% genomic similarity with horseshoe bat (Rhinolophus species) coronavirus HKU2, suggesting a bat origin of the pig virus (106, 134, 135). It is also imperative to note that the SADS-CoV outbreak started in Guangdong province, near the location of the SARS pandemic origin (134). Before this outbreak, pigs were not known to be infected with bat-origin coronaviruses. This indicates that the bat-origin coronavirus jumped to pig by breaking the species barrier. The next step of this jump might not end well, since pigs are considered the mixing vessel for influenza A viruses due to their ability to be infected by both human and avian influenza A viruses (136). Similarly, they may act as the mixing vessel for coronaviruses, since they are in frequent contact with both humans and multiple wildlife species. Additionally, pigs are also found to be susceptible to infection with human SARS-CoV and MERS-CoV, making this scenario a nightmare (109, 137). It is only a matter of time before another zoonotic coronavirus results in an epidemic by jumping the so-called species barrier (287). The host spectrum of coronavirus increased when a novel coronavirus, namely, SW1, was recognized in the liver tissue of a captive beluga whale (Delphinapterus leucas) (138). In recent decades, several novel coronaviruses were identified from different animal species. Bats can harbor these viruses without manifesting any clinical disease but are persistently infected (30). They are the only mammals with the capacity for self-powered flight, which enables them to migrate long distances, unlike land mammals. Bats are distributed worldwide and also account for about a fifth of all mammalian species (6). This makes them the ideal reservoir host for many viral agents and also the source of novel coronaviruses that have yet to be identified. It has become a necessity to study the diversity of coronavirus in the bat population to prevent future outbreaks that could jeopardize livestock and public health. The repeated outbreaks caused by bat-origin coronaviruses calls for the development of efficient molecular surveillance strategies for studying Betacoronavirus among animals (12), especially in the Rhinolophus bat family (86). Chinese bats have high commercial value, since they are used in traditional Chinese medicine (TCM). Therefore, the handling of bats for trading purposes poses a considerable risk of transmitting zoonotic CoV epidemics (139). Due to the possible role played by farm and wild animals in SARS-CoV- 2 infection, the WHO, in their novel coronavirus (COVID-19) situation report, recommended the avoidance of unprotected contact with both farm and wild animals (25). The live-animal markets, like the one in Guangdong, China, provides a setting for animal coronaviruses to amplify and to be transmitted to new hosts, like humans (78). Such markets can be considered a critical place for the origin of novel zoonotic diseases and have enormous public health significance in the event of an outbreak. Bats are the reservoirs for several viruses; hence, the role of bats in the present outbreak cannot be ruled out (140). In a qualitative study conducted for evaluating the zoonotic SARS-CoV-2 (336). However, experimental inoculation with SARS-CoV-2 failed to infect pigs (329). Further studies are required to identify the possible animal reservoirs of SARS-CoV-2 and the seasonal variation in the circulation of these viruses in the animal population. Research collaboration between human and animal health sectors is becoming a necessity to evaluate and identify the possible risk factors of transmission between animals and humans. Such cooperation will help to devise efficient strategies for the management of emerging zoonotic diseases (12). DIAGNOSIS OF SARS-COV-2 (COVID-19) RNA tests can confirm the diagnosis of SARS-CoV-2 (COVID-19) cases with real-time RT-PCR or next-generation sequencing (148, 149, 245, 246). At present, nucleic acid detection techniques, like RT-PCR, are considered an effective method for confirming the diagnosis in clinical cases of COVID-19 (148). Several companies across the world are currently focusing on developing and marketing SARS-CoV-2-specific nucleic acid detection kits. Multiple laboratories are also developing their own in-house RT-PCR. One of them is the SARS-CoV-2 nucleic acid detection kit produced by Shuoshi Biotechnology (double fluorescence PCR method) (150). Up to 30 March 2020, the U.S. Food and Drug Administration (FDA) had granted 22 in vitro diagnostics Emergency Use Authorizations (EUAs), including for the RT-PCR diagnostic panel for the universal detection of SARS-like betacoronaviruses and specific detection of SARS-CoV-2, developed by the U.S. CDC (Table 1) (258, 259). TABLE 1 FDA-approved in vitro Emergency Use Authorization diagnostics available for SARS-CoV-2 as of 30 March 2020a Developer Diagnostic platform Centers for Disease Control and Prevention (CDC) CDC 2019-nCoV real-time RT-PCR diagnostic panel Wadsworth Center, New York State Department of Public Health (CDC) New York SARS-CoV-2 real-time reverse transcriptase (RT)-PCR diagnostic panel Roche Molecular Systems, Inc. (RMS) cobas SARS-CoV-2 Thermo Fisher Scientific, Inc. TaqPath COVID-19 combo kit Developer Diagnostic platform Laboratory Corporation of America (LabCorp) COVID-19 RT-PCR test Hologic, Inc. Panther fusion SARS-CoV-2 Quest Diagnostics Infectious Disease, Inc. Quest SARS-CoV-2 rRT-PCR Quidel Corporation Lyra SARS-CoV-2 assay Abbott Molecular Abbott RealTime SARS-CoV-2 assay GenMark Diagnostics, Inc. ePlex SARS-CoV-2 test DiaSorin Molecular, LLC Simplexa COVID-19 direct assay Cepheid Xpert Xpress SARS-CoV-2 test Primerdesign, Ltd. COVID-19 Genesig real-time PCR assay Mesa Biotech, Inc. Accula SARS-Cov-2 test BioFire Defense, LLC BioFire COVID-19 test PerkinElmer, Inc. PerkinElmer new coronavirus nucleic acid detection kit Avellino Lab USA, Inc. AvellinoCoV2 test BGI Genomics, Co. Ltd. Real-time fluorescent RT-PCR kit for detecting SARS-2019-nCoV Luminex Molecular Diagnostics, Inc. NxTAG CoV extended panel assay Abbott Diagnostics Scarborough, Inc. ID Now COVID-19 Qiagen GmbH QIAstat-Dx respiratory SARS-CoV-2 panel NeuMoDx Molecular, Inc. NeuMoDx SARS-CoV-2 assay aData are from references 258 and 259. Recently, 95 full-length genomic sequences of SARAS-CoV-2 strains available in the National Center for Biotechnology Information and GISAID databases were subjected to multiple-sequence alignment and phylogenetic analyses for studying variations in the viral genome (260). All the viral strains revealed high homology of 99.99% (99.91% to 100%) at the nucleotide level and 99.99% (99.79% to 100%) at the amino acid level. Overall variation was found to be low in ORF regions, with 13 variation sites recognized in 1a, 1b, S, 3a, M, 8, and N regions. Mutation rates of 30.53% (29/95) and 29.47% (28/95) were observed at nt 28144 (ORF8) and nt 8782 (ORF1a) positions, respectively. Owing to such selective mutations, a few specific regions of SARS-CoV-2 should not be considered for designing primers and probes. The SARS-CoV-2 reference sequence could pave the way to study molecular biology and pathobiology, along with developing diagnostics and appropriate prevention and control strategies for countering SARS-CoV-2 (260). Nucleic acids of SARS-CoV-2 can be detected from samples (64) such as bronchoalveolar lavage fluid, sputum, nasal swabs, fiber bronchoscope brush biopsy specimen, pharyngeal swabs, feces, blood, and urine, with different levels of diagnostic performance (Table 2) (80, 245, 246). The viral loads of SARS-CoV-2 were measured using N-gene-specific quantitative RT- PCR in throat swab and sputum samples collected from COVID-19-infected individuals. The results indicated that the viral load peaked at around 5 to 6  days following the onset of symptoms, and it ranged from 104 to 107 copies/ml during this time (151). In another study, the viral load was found to be higher in the nasal swabs than the throat swabs obtained from COVID-19 symptomatic patients (82). Although initially it was thought that viral load would be associated with poor outcomes, some case reports have shown asymptomatic individuals with high viral loads (247). Recently, the viral load in nasal and throat swabs of 17 symptomatic patients was determined, and higher viral loads were recorded soon after the onset of symptoms, particularly in the nose compared to the throat. The pattern of viral nucleic acid shedding of SARS-CoV-2-infected patients was similar to that of influenza patients but seemed to be different from that of SARS-CoV patients. The viral load detected in asymptomatic patients resembled that of symptomatic patients as studied in China, which reflects the transmission perspective of asymptomatic or symptomatic patients having minimum signs and symptoms (82). Another study, conducted in South Korea, related to SARS-CoV-2 viral load, opined that SARS-CoV-2 kinetics were significantly different from those of earlier reported CoV infections, including SARS-CoV (253). SARS-CoV-2 transmission can occur early in the viral infection phase; thus, diagnosing cases and isolation attempts for this virus warrant different strategies than those needed to counter SARS-CoV. Studies are required to establish any correlation between SARS-CoV-2 viral load and cultivable virus. Recognizing patients with fewer or no symptoms, along with having modest detectable viral RNA in the oropharynx for 5 days, indicates the requirement of data for assessing SARS-CoV-2 transmission dynamics and updating the screening procedures in the clinics (82). TABLE 2 Clinical specimens for detection of SARS CoV-2 Sample Recommendationa Bronchoalveolar lavage fluid +++ Sputum +++ transmission of SARS-CoV-2, infected COVID-19 patients should only be considered negative when they test negative for SARS-CoV-2 in the stool sample. A suspected case of COVID-19 infection is said to be confirmed if the respiratory tract aspirate or blood samples test positive for SARS-CoV-2 nucleic acid using RT-PCR or by the identification of SARS-CoV-2 genetic sequence in respiratory tract aspirate or blood samples (80). The patient will be confirmed as cured when two subsequent oral swab results are negative (153). Recently, the live virus was detected in the self-collected saliva of patients infected with COVID-19. These findings were confirmative of using saliva as a noninvasive specimen for the diagnosis of COVID-19 infection in suspected individuals (152). It has also been observed that the initial screening of COVID-19 patients infected with RT-PCR may give negative results even if they have chest CT findings that are suggestive of infection. Hence, for the accurate diagnosis of COVID-19, a combination of repeated swab tests using RT-PCR and CT scanning is required to prevent the possibility of false-negative results during disease screening (154). RT-PCR is the most widely used test for diagnosing COVID-19. However, it has some significant limitations from the clinical perspective, since it will not give any clarity regarding disease progression. Droplet digital PCR (ddPCR) can be used for the quantification of viral load in the samples obtained from lower respiratory tracts. Hence, based on the viral load, we can quickly evaluate the progression of infection (291). In addition to all of the above findings, sequencing and phylogenetics are critical in the correct identification and confirmation of the causative viral agent and useful to establish relationships with previous isolates and sequences, as well as to know, especially during an epidemic, the nucleotide and amino acid mutations and the molecular divergence. The rapid development and implementation of diagnostic tests against emerging novel diseases like COVID-19 pose significant challenges due to the lack of resources and logistical limitations associated with an outbreak (155). SARS-CoV-2 infection can also be confirmed by isolation and culturing. The human airway epithelial cell culture was found to be useful in isolating SARS-CoV-2 (3). The efficient control of an outbreak depends on the rapid diagnosis of the disease. Recently, in response to the COVID-19 outbreak, 1- step quantitative real-time reverse transcription-PCR assays were developed that detect the ORF1b and N regions of the SARS-CoV-2 genome (156). That assay was found to achieve the rapid detection of SARS-CoV-2. Nucleic acid- based assays offer high accuracy in the diagnosis of SARS-CoV-2, but the current rate of spread limits its use due to the lack of diagnostic assay kits. This will further result in the extensive transmission of COVID-19, since only a portion of suspected cases can be diagnosed. In such situations, conventional serological assays, like enzyme-linked immunosorbent assay (ELISA), that are specific to COVID-19 IgM and IgG antibodies can be used as a high-throughput alternative (149). At present, there is no diagnostic kit available for detecting the SARS-CoV-2 antibody (150). The specific antibody profiles of COVID-19 patients were analyzed, and it was found that the IgM level lasted more than 1 month, indicating a prolonged stage of virus replication in SARS-CoV-2-infected patients. The IgG levels were found to increase only in the later stages of the disease. These findings indicate that the specific antibody profiles of SARS-CoV-2 and SARS-CoV were similar (325). These findings can be utilized for the development of specific diagnostic tests against COVID-19 and can be used for rapid screening. Even though diagnostic test kits are already available that can detect the genetic sequences of SARS-CoV-2 (95), their availability is a concern, as the number of COVID-19 cases is skyrocketing (155, 157). A major problem associated with this diagnostic kit is that it works only when the test subject has an active infection, limiting its use to the earlier stages of infection. Several laboratories around the world are currently developing antibody-based diagnostic tests against SARS-CoV-2 (157). Chest CT is an ideal diagnostic tool for identifying viral pneumonia. The sensitivity of chest CT is far superior to that of X-ray screening. The chest CT findings associated with COVID-19-infected patients include characteristic patchy infiltration that later progresses to ground-glass opacities (158). Early manifestations of COVID-19 pneumonia might not be evident in X-ray chest radiography. In such situations, a chest CT examination can be performed, as it is considered highly specific for COVID-19 pneumonia (118). Those patients having COVID-19 pneumonia will exhibit the typical ground-glass opacity in their chest CT images (154). The patients infected with COVID-19 had elevated plasma angiotensin 2 levels. The level of angiotensin 2 was found to be linearly associated with viral load and lung injury, indicating its potential as a diagnostic biomarker (121). The chest CT imaging abnormalities associated with COVID-19 pneumonia have also been observed even in asymptomatic patients. These abnormalities progress from the initial focal unilateral to diffuse bilateral ground-glass opacities and will further progress to or coexist with lung consolidation changes within 1 to 3 weeks (159). The role played by radiologists in the current scenario is very important. Radiologists can help in the early diagnosis of lung abnormalities associated with COVID-19 pneumonia. They can also help in the evaluation of disease severity, identifying its progression to acute respiratory distress syndrome and the presence of secondary bacterial infections (160). Even though chest CT is considered an essential diagnostic tool for COVID-19, the extensive use of CT for screening purposes in the suspected individuals might be associated with a disproportionate risk-benefit ratio due to increased radiation exposure as well as increased risk of cross-infection. Hence, the use of CT for early diagnosis of SARS-CoV-2 infection in high-risk groups should be done with great caution (292). More recently, other advanced diagnostics have been designed and developed for the detection of SARS-CoV-2 (345, 347, 350,–352). A reverse transcriptional loop-mediated isothermal amplification (RT-LAMP), namely, iLACO, has been developed for rapid and colorimetric detection of this virus (354). RT-LAMP serves as a simple, rapid, and sensitive diagnostic method that does not require sophisticated equipment or skilled personnel (349). An interactive web-based dashboard for tracking SARS-CoV-2 in a real-time mode has been designed (238). A smartphone-integrated home-based point- of-care testing (POCT) tool, a paper-based POCT combined with LAMP, is a useful point-of-care diagnostic (353). An Abbott ID Now COVID-19 molecular POCT-based test, using isothermal nucleic acid amplification technology, has been designed as a point-of-care test for very rapid detection of SARS-CoV-2 in just 5 min (344). A CRISPR-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) diagnostic for rapid detection of SARS-CoV-2 without the requirement of specialized instrumentation has been reported to be very useful in the clinical diagnosis of COVID-19 (360). A CRISPR-Cas12- based lateral flow assay also has been developed for rapid detection of SARS-CoV-2 (346). Artificial intelligence, by means of a three-dimensional deep-learning model, has been developed for sensitive and specific diagnosis of COVID-19 via CT images (332). Tracking and mapping of the rising incidence rates, disease outbreaks, community spread, clustered transmission events, hot spots, and superspreader potential of SARS-CoV-2/COVID warrant full exploitation of real-time disease mapping by employing geographical information systems (GIS), such as the GIS software Kosmo 3.1, web-based real-time tools and dashboards, apps, and advances in information technology (356,–359). Researchers have also developed a few prediction tools/models, such as the prediction model risk of bias assessment tool (PROBAST) and critical appraisal and data extraction for systematic reviews of prediction modeling studies (CHARMS), which could aid in assessing the possibility of getting infection and estimating the prognosis in patients; however, such models may suffer from bias issues and, hence, cannot be considered completely trustworthy, which necessitates the development of new and reliable predictors (360). VACCINES, THERAPEUTICS, AND DRUGS of cross-protection in COVID-19 was evaluated by comparing the S protein sequences of SARS-CoV-2 with that of SARS-CoV. The comparative analysis confirmed that the variable residues were found concentrated on the S1 subunit of S protein, an important vaccine target of the virus (150). Hence, the possibility of SARS-CoV-specific neutralizing antibodies providing cross- protection to COVID-19 might be lower. Further genetic analysis is required between SARS-CoV-2 and different strains of SARS-CoV and SARS-like (SL) CoVs to evaluate the possibility of repurposed vaccines against COVID-19. This strategy will be helpful in the scenario of an outbreak, since much time can be saved, because preliminary evaluation, including in vitro studies, already would be completed for such vaccine candidates. Multiepitope subunit vaccines can be considered a promising preventive strategy against the ongoing COVID-19 pandemic. In silico and advanced immunoinformatic tools can be used to develop multiepitope subunit vaccines. The vaccines that are engineered by this technique can be further evaluated using docking studies and, if found effective, then can be further evaluated in animal models (365). Identifying epitopes that have the potential to become a vaccine candidate is critical to developing an effective vaccine against COVID-19. The immunoinformatics approach has been used for recognizing essential epitopes of cytotoxic T lymphocytes and B cells from the surface glycoprotein of SARS-CoV-2. Recently, a few epitopes have been recognized from the SARS-CoV-2 surface glycoprotein. The selected epitopes explored targeting molecular dynamic simulations, evaluating their interaction with corresponding major histocompatibility complex class I molecules. They potentially induce immune responses (176). The recombinant vaccine can be designed by using rabies virus (RV) as a viral vector. RV can be made to express MERS-CoV S1 protein on its surface so that an immune response is induced against MERS-CoV. The RV vector-based vaccines against MERS-CoV can induce faster antibody response as well as higher degrees of cellular immunity than the Gram-positive enhancer matrix (GEM) particle vector-based vaccine. However, the latter can induce a very high antibody response at lower doses (167). Hence, the degree of humoral and cellular immune responses produced by such vaccines depends upon the vector used. Dual vaccines have been getting more popular recently. Among them, the rabies virus-based vectored vaccine platform is used to develop vaccines against emerging infectious diseases. The dual vaccine developed from inactivated rabies virus particles that express the MERS-CoV S1 domain of S protein was found to induce immune responses for both MERS-CoV and rabies virus. The vaccinated mice were found to be completely protected from challenge with MERS-CoV (169). The intranasal administration of the recombinant adenovirus-based vaccine in BALB/c mice was found to induce long-lasting neutralizing immunity against MERS spike pseudotyped virus, characterized by the induction of systemic IgG, secretory IgA, and lung- resident memory T-cell responses (177). Immunoinformatics methods have been employed for the genome-wide screening of potential vaccine targets among the different immunogens of MERS-CoV (178). The N protein and the potential B-cell epitopes of MERS-CoV E protein have been suggested as immunoprotective targets inducing both T-cell and neutralizing antibody responses (178, 179). The collaborative effort of the researchers of Rocky Mountain Laboratories and Oxford University is designing a chimpanzee adenovirus- vectored vaccine to counter COVID-19 (180). The Coalition for Epidemic Preparedness Innovations (CEPI) has initiated three programs to design SARS-CoV-2 vaccines (181). CEPI has a collaborative project with Inovio for designing a MERS-CoV DNA vaccine that could potentiate effective immunity. CEPI and the University of Queensland are designing a molecular clamp vaccine platform for MERS-CoV and other pathogens, which could assist in the easier identification of antigens by the immune system (181). CEPI has also funded Moderna to develop a vaccine for COVID-19 in partnership with the Vaccine Research Center (VRC) of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH) (182). By employing mRNA vaccine platform technology, a vaccine candidate expressing SARS-CoV-2 spike protein is likely to go through clinical testing in the coming months (180). On 16 March 2020, Jennifer Haller became the first person outside China to receive an experimental vaccine, developed by Moderna, against this pandemic virus. Moderna, along with China’s CanSino Biologics, became the first research group to launch small clinical trials of vaccines against COVID-19. Their study is evaluating the vaccine’s safety and ability to trigger immune responses (296). Scientists from all over the world are trying hard to develop working vaccines with robust protective immunity against COVID-19. Vaccine candidates, like mRNA-1273 SARS-CoV-2 vaccine, INO-4800 DNA coronavirus vaccine, and adenovirus type 5 vector vaccine candidate (Ad5-nCoV), are a few examples under phase I clinical trials, while self-amplifying RNA vaccine, oral recombinant COVID-19 vaccine, BNT162, plant-based COVID-19 vaccine, and Ii-Key peptide COVID-19 vaccine are under preclinical trials (297). Similarly, the WHO, on its official website, has mentioned a detailed list of COVID-19 vaccine agents that are under consideration. Different phases of trials are ongoing for live attenuated virus vaccines, formaldehyde alum inactivated vaccine, adenovirus type 5 vector vaccine, LNP-encapsulated mRNA vaccine, DNA plasmid vaccine, and S protein, S-trimer, and Ii-Key peptide as a subunit protein vaccine, among others (298). The process of vaccine development usually takes approximately ten years, in the case of inactivated or live attenuated vaccines, since it involves the generation of long-term efficacy data. However, this was brought down to 5 years during the Ebola emergency for viral vector vaccines. In the urgency associated with the COVID-19 outbreaks, we expect a vaccine by the end of this year (343). The development of an effective vaccine against COVID-19 with high speed and precision is the combined result of advancements in computational biology, gene synthesis, protein engineering, and the invention of advanced manufacturing platforms (342). The recurring nature of the coronavirus outbreaks calls for the development of a pan-coronavirus vaccine that can produce cross-reactive antibodies. However, the success of such a vaccine relies greatly on its ability to provide protection not only against present versions of the virus but also the ones that are likely to emerge in the future. This can be achieved by identifying antibodies that can recognize relatively conserved epitopes that are maintained as such even after the occurrence of considerable variations (362). Even though several vaccine clinical trials are being conducted around the world, pregnant women have been completely excluded from these studies. Pregnant women are highly vulnerable to emerging diseases such as COVID-19 due to alterations in the immune system and other physiological systems that are associated with pregnancy. Therefore, in the event of successful vaccine development, pregnant women will not get access to the vaccines (361). Hence, it is recommended that pregnant women be included in the ongoing vaccine trials, since successful vaccination in pregnancy will protect the mother, fetus, and newborn. The heterologous immune effects induced by Bacillus Calmette Guérin (BCG) vaccination is a promising strategy for controlling the COVID-19 pandemic and requires further investigations. BCG is a widely used vaccine against tuberculosis in high-risk regions. It is derived from a live attenuated strain of Mycobacterium bovis. At present, three new clinical trials have been registered to evaluate the protective role of BCG vaccination against SARS- CoV-2 (363). Recently, a cohort study was conducted to evaluate the impact of childhood BCG vaccination in COVID-19 PCR positivity rates. However, childhood BCG vaccination was found to be associated with a rate of COVID- 19-positive test results similar to that of the nonvaccinated group (364). Further studies are required to analyze whether BCG vaccination in childhood can induce protective effects against COVID-19 in adulthood. Population These possess benefits of easy accessibility and recognized pharmacokinetic and pharmacodynamic activities, stability, doses, and side effects (9). Repurposed drugs have been studied for treating CoV infections, like lopinavir/ritonavir, and interferon-1β revealed in vitro anti-MERS-CoV action. The in vivo experiment carried out in the nonhuman primate model of common marmosets treated with lopinavir/ritonavir and interferon beta showed superior protective results in treated animals than in the untreated ones (190). A combination of these drugs is being evaluated to treat MERS in humans (MIRACLE trial) (191). These two protease inhibitors (lopinavir and ritonavir), in combination with ribavirin, gave encouraging clinical outcomes in SARS patients, suggesting their therapeutic values (165). However, in the current scenario, due to the lack of specific therapeutic agents against SARS- CoV-2, hospitalized patients confirmed for the disease are given supportive care, like oxygen and fluid therapy, along with antibiotic therapy for managing secondary bacterial infections (192). Patients with novel coronavirus or COVID-19 pneumonia who are mechanically ventilated often require sedatives, analgesics, and even muscle relaxation drugs to prevent ventilator-related lung injury associated with human-machine incoordination (122). The result obtained from a clinical study of four patients infected with COVID-19 claimed that combination therapy using lopinavir/ritonavir, arbidol, and Shufeng Jiedu capsules (traditional Chinese medicine) was found to be effective in managing COVID-19 pneumonia (193). It is difficult to evaluate the therapeutic potential of a drug or a combination of drugs for managing a disease based on such a limited sample size. Before choosing the ideal therapeutic agent for the management of COVID-19, randomized clinical control studies should be performed with a sufficient study population. Antiviral Drugs Several classes of routinely used antiviral drugs, like oseltamivir (neuraminidase inhibitor), acyclovir, ganciclovir, and ribavirin, do not have any effect on COVID-19 and, hence, are not recommended (187). Oseltamivir, a neuraminidase inhibitor, has been explored in Chinese hospitals for treating suspected COVID-19 cases, although proven efficacy against SARS-CoV-2 is still lacking for this drug (7). The in vitro antiviral potential of FAD-approved drugs, viz., ribavirin, penciclovir, nitazoxanide, nafamostat, and chloroquine, tested in comparison to remdesivir and favipiravir (broad-spectrum antiviral drugs) revealed remdesivir and chloroquine to be highly effective against SARS-CoV-2 infection in vitro (194). Ribavirin, penciclovir, and favipiravir might not possess noteworthy in vivo antiviral actions for SARS-CoV-2, since higher concentrations of these nucleoside analogs are needed in vitro to lessen the viral infection. Both remdesivir and chloroquine are being used in humans to treat other diseases, and such safer drugs can be explored for assessing their effectiveness in COVID-19 patients. Several therapeutic agents, such as lopinavir/ritonavir, chloroquine, and hydroxychloroquine, have been proposed for the clinical management of COVID-19 (299). A molecular docking study, conducted in the RNA- dependent RNA polymerase (RdRp) of SARS-CoV-2 using different commercially available antipolymerase drugs, identified that drugs such as ribavirin, remdesivir, galidesivir, tenofovir, and sofosbuvir bind RdRp tightly, indicating their vast potential to be used against COVID-19 (305). A broad- spectrum antiviral drug that was developed in the United States, tilorone dihydrochloride (tilorone), was previously found to possess potent antiviral activity against MERS, Marburg, Ebola, and Chikungunya viruses (306). Even though it had broad-spectrum activity, it was neglected for an extended period. Tilorone is another antiviral drug that might have activity against SARS-CoV-2. Remdesivir, a novel nucleotide analog prodrug, was developed for treating Ebola virus disease (EVD), and it was also found to inhibit the replication of SARS-CoV and MERS-CoV in primary human airway epithelial cell culture systems (195). Recently, in vitro study has proven that remdesivir has better antiviral activity than lopinavir and ritonavir. Further, in vivo studies conducted in mice also identified that treatment with remdesivir improved pulmonary function and reduced viral loads and lung pathology both in prophylactic and therapeutic regimens compared to lopinavir/ritonavir-IFN-γ treatment in MERS-CoV infection (8). Remdesivir also inhibits a diverse range of coronaviruses, including circulating human CoV, zoonotic bat CoV, and prepandemic zoonotic CoV (195). Remdesivir is also considered the only therapeutic drug that significantly reduces pulmonary pathology (8). All these findings indicate that remdesivir has to be further evaluated for its efficacy in the treatment of COVID-19 infection in humans. The broad-spectrum activity exhibited by remdesivir will help control the spread of disease in the event of a new coronavirus outbreak. Chloroquine is an antimalarial drug known to possess antiviral activity due to its ability to block virus-cell fusion by raising the endosomal pH necessary for fusion. It also interferes with virus-receptor binding by interfering with the terminal glycosylation of SARS-CoV cellular receptors, such as ACE2 (196). In a recent multicenter clinical trial that was conducted in China, chloroquine phosphate was found to exhibit both efficacy and safety in the therapeutic management of SARS-CoV-2-associated pneumonia (197). This drug is already included in the treatment guidelines issued by the National Health Commission of the People’s Republic of China. The preliminary clinical trials using hydroxychloroquine, another aminoquinoline drug, gave promising results. The COVID-19 patients received 600 mg of hydroxychloroquine daily along with azithromycin as a single-arm protocol. This protocol was found to be associated with a noteworthy reduction in viral load. Finally, it resulted in a complete cure (271); however, the study comprised a small population and, hence, the possibility of misinterpretation could arise. However, in another case study, the authors raised concerns over the efficacy of hydroxychloroquine-azithromycin in the treatment of COVID-19 patients, since no observable effect was seen when they were used. In some cases, the treatment was discontinued due to the prolongation of the QT interval (307). Hence, further randomized clinical trials are required before concluding this matter. Recently, another FDA-approved drug, ivermectin, was reported to inhibit the in vitro replication of SARS-CoV-2. The findings from this study indicate that a single treatment of this drug was able to induce an ∼5,000- fold reduction in the viral RNA at 48 h in cell culture. (308). One of the main disadvantages that limit the clinical utility of ivermectin is its potential to cause cytotoxicity. However, altering the vehicles used in the formulations, the pharmacokinetic properties can be modified, thereby having significant control over the systemic concentration of ivermectin (338). Based on the pharmacokinetic simulation, it was also found that ivermectin may have limited therapeutic utility in managing COVID-19, since the inhibitory concentration that has to be achieved for effective anti-SARS-CoV-2 activity is far higher than the maximum plasma concentration achieved by administering the approved dose (340). However, ivermectin, being a host- directed agent, exhibits antiviral activity by targeting a critical cellular process of the mammalian cell. Therefore, the administration of ivermectin, even at lower doses, will reduce the viral load at a minor level. This slight decrease will provide a great advantage to the immune system for mounting a large-scale antiviral response against SARS-CoV-2 (341). Further, a combination of ivermectin and hydroxychloroquine might have a synergistic effect, since ivermectin reduces viral replication, while hydroxychloroquine inhibits the entry of the virus in the host cell (339). Further, in vivo studies and randomized clinical control trials are required to understand the mechanism as well as the clinical utility of this promising drug. Nafamostat is a potent inhibitor of MERS-CoV that acts by preventing membrane fusion. Nevertheless, it does not have any sort of inhibitory action against SARS-CoV-2 infection (194). Recently, several newly synthesized halogenated triazole compounds were evaluated, using fluorescence resonance energy transfer (FRET)-based helicase assays, for their ability to inhibit helicase activity.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved