Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Syllabus for GUTS lecture on Amino Acids, Slides of Biochemistry

At physiological pH (7.4) both the amino group (a basic functional group) and the carboxylate group (acidic functional group) are ionized.

Typology: Slides

2022/2023

Uploaded on 02/28/2023

dyanabel
dyanabel 🇺🇸

4.7

(22)

53 documents

Partial preview of the text

Download Syllabus for GUTS lecture on Amino Acids and more Slides Biochemistry in PDF only on Docsity! Page  |  1     Syllabus  for  GUTS  lecture  on  Amino  Acids     I.  Introduction. Amino  acids  serve  a  variety  of  functions  in  cells.    They  are  the  building  blocks  for   proteins  composed  of  hundreds  of  amino  acids.  In  addition  amino  acids  can  be   metabolized  to  provide  energy  for  cells,  provide  building  blocks  for  other  biologically   important  compounds  such  as  glucose,  fatty  acids  and  neurotransmitters,  and  can   function  on  their  own  as  neurotransmitters.    This  GUTS  lecture  focuses  on  the  structural   and  chemical  features  of  amino  acids  that  you  need  to  know  before  learning  in  later   lectures  how  amino  acids  serve  these  functions.    The  primary  focus  of  this  lecture  is  on   the  20  amino  acids  commonly  found  in  proteins.   II. The  20  amino  acids  commonly    found  in  proteins  have  the  general  structure  shown   below:    a  central  carbon  atom,  called  the  α-­‐carbon,  bonded  to  an  amino  group,  a   carboxylate  group,  a  hydrogen  atom  and  a  variable  side  chain  designated  R  that  is   different  for  each  of  the  20  amino  acids.     At  physiological  pH  (7.4)  both  the  amino  group  (a  basic  functional  group)  and  the   carboxylate  group  (acidic  functional  group)  are  ionized.    At  this  pH  amino  acids  are   dipolar  ions  (contains  oppositely  charged  groups  but  the  overall  charge  on  the  molecule   is  0).    The  degree  of  ionization  of  acids  and  bases  changes  with  pH.    The  same  is  true  for   the  acidic  and  basic  functional  groups  on  amino  acids.         Each  acid  or  base  has  a  characteristic  dissociation  constant.    In  biochemist  we  usually   use  the  dissociation  constant  Ka  to  for  both  acids  and  bases.    Ka  is  simply  the  ratio  of  the   nonprotonated  form  of  a  molecule/protonated  form  in  water  at  equilibrium.      In  the   early  1920s,  two  scientists  studying  acid-­‐base  regulation  in  humans  derived  the   following  equation  known  as  the  Henderson-­‐Hasselbalch  equation:        pH  =  pKa  +  log  [A-­‐]/[HA].    pKa  is  just  the  negative  log  of  Ka.             Page  |  2     Like  Ka,  pKa  is  a  constant.    Looking  at  this  relationship  you  can  see  that  when  the  ratio  [A-­‐ ]/[HA]  =  1.0,  log  of  1.0  =  0,  and  pH  =  pKa.  Thus  one  way  to  think  of  pKa  is  that  the  value  is   equal  to  the  pH  at  which  50%  of  an  acid  or  base  will  be  protonated  and  50%  will  not.     A  pH  of  approximately  2.2  is  the  average  pKa  for  the  α-­‐carboxylic  acid  group  on  an  amino   acid.    pH  7.4  is  5  orders  of  above  the  pKa  for  this  group  and  so  >  99.9999%  of  the  COOH   groups  on  the  amino  acid  will  have  lost  their  protons  at  this  pH  and  will  be  negatively   charged.    If  acid  is  added,  the  carboxylate  group  will  take  up  the  protons  and  buffer  the   pH  change.     Now  consider  the  α-­‐amino  group,  for  which  the  pKa  (for  NH3 +  losing  a  proton)  is  9.4.      At   pH  =  7.4,  about  99.9%  of  α-­‐amino  groups  will  be  in  the  NH3 +  form.    At  pH  =  9.4,  50%  of   α-­‐amino  groups  will  have  lost  a  proton  to  become  NH2  and  will  no  longer  carry  a  charge.   If  base  is  added  to  the  system,  some  of  the  NH3 +  will  lose  a  proton  and  thus  will  buffer   the  pH  change.     From  the  above  you  should  see  that  amino  acids  are  effective  buffers.    They  are  also   important  buffers  in  cells  because  their  concentration  is  very  high  there.       III.  In  proteins,  amino  acids  are  linked  together  by  peptide  bonds,  formed  in  a   dehydration  reaction  (water  is  removed)  between  the  α-­‐carboxylate  group  on  one   amino  acid  and  the  α-­‐amino  group  on  another  amino  acid.    In  cells,  the  amino  acid   chain  always  grows  left  to  right  as  drawn  in  the  figure  below.    Since  this  always  leaves  a   nonbonded  amino  group  on  the  left  end  and  a  nonbonded  carboxylate  group  on  the   right  end,  these  ends  are  called  the  amino-­‐terminal  end  and  the  carboxy-­‐terminal  end   respectively.    The  direction  of  chain  growth  is  from  the  amino-­‐terminal  end  toward  the   carboxy-­‐terminal  end.    In  cells,  the  specific  amino  acid  added  during  chain  growth  is   dictated  by  the  genetic  code  in  DNA.       =  peptide  bond   Page  |  5     Disulfide  bonds  stabilize  the  three-­‐dimensional  structures  of  proteins,  and  in  some  cases   the  quaternary  structures  (see  GUTS  lecture  on  Protein  Structure  if  you  are  not  familiar   with  these  terms).    In  eukaryotes,  disulfide  bonds  are  found  only  in  secretory  proteins,   lysosomal  proteins,  and  the  exoplasmic  domains  of  membrane-­‐bound  proteins.  This  is   because  the  environment  in  the  cytoplasm  and  nucleus  favors  reduction  of  the  disulfide   bond.   VII. Amino  acids  with  nonpolar  side  chains  –  contain  only  functional  groups  that  have  a  net   zero  charge  at  physiological  pH  and  that  do  not  participate  in  hydrogen  or  ionic  bonds.     Typically  these  side  chains  are  hydrocarbon-­‐rich,  are  therefore  hydrophobic,  and  in  most   proteins  are  more  often  found  in  the  interior  where  they  are  protected  from  water.      In   membrane-­‐bound  proteins,  the  opposite  is  true  since  the  exterior  of  the  protein  interacts   with  the  hydrophobic  lipid  bilayer.    Interaction  between  hydrophobic  amino  acids  is  a   major  force  in  stabilizing  protein  structure.  Hydrophobic  patches  may  also  be  found  on   the  surfaces  of  some  cytoplasmic  proteins  where  they  often  form  sites  that  interact  with   other  proteins.     One  specific  amino  acid  from  this  group  is  particularly  important  to  remember  when   thinking  about  protein  structure.    This  is  proline.    Note  that  the  side  chain  forms  bonds   at  2  sites  along  the  proline  backbone.    This  confers  unusually  large  rigidity  on  the   backbone  since  rotation  around  the  N-­‐C  bond  is  severely  constrained;  the  angle  of  the   backbone  is  also  unusual  here.    Together  these  properties  mean  that  there  is  a  “kink”  in   the  protein  backbone  where  proline  is  incorporated. Page  |  6     VIII.  The  chirality  of  amino  acids  affects  their  functions.      If  you  look  back  at  the  structures  of   the  amino  acids  you  will  see  that,  with  the  exception  of  glycine,  all  amino  acids  have  4  different   functional  groups  bound  to  the  central  α-­‐carbon.    The  α-­‐carbon  is  thus  said  to  be  chiral.             Amino  acids  that  have  a  chiral  α-­‐carbon  exist  in  two  forms,  called  D  and  L,  which  are  mirror   images  of  each  other.    The  D  and  L  forms  are  stereoisomers,  meaning  that  although  they  have   the  same  functional  groups  attached  to  the  central  carbon  they  present  their  functional  groups   in  different  directions  in  space;  in  addition,  the  molecules  cannot  be  superimposed  in  space   simply  by  rotating  the  molecules.    All  amino  acids  found  in  human  proteins  have  the  L   configuration.    However  both  configurations  occur  in  some  plants  and  bacteria,  so  D-­‐amino   acids  are  part  of  our  diets.    Our  bodies  contain  enzymes  that  can  break  down  D-­‐amino  acids  and   then  utilize  the  carbon  skeletons  for  fuel.    In  addition,  some  D-­‐amino  acids  are  synthesized  in   neuronal  cells  and  act  as  neurotransmitters.     To  check  your  learning,  go  online  and  take  the  Post-­‐Test  for  the   GUTS  lecture  on  Amino  Acids.    This  is  found  at  the  end  of  the   recorded  lecture.  
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved