Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

The Structure and Function of Large Biological Molecules by ..., Study notes of Biological Sciences

All of the biological macromolecules are built from smaller subunits. Each subunit features -‐H ... In the case of proteins, those subunits are amino acids.

Typology: Study notes

2021/2022

Uploaded on 08/05/2022

char_s67
char_s67 🇱🇺

4.5

(109)

1.9K documents

1 / 5

Toggle sidebar

Related documents


Partial preview of the text

Download The Structure and Function of Large Biological Molecules by ... and more Study notes Biological Sciences in PDF only on Docsity! The  Structure  and  Function  of  Large  Biological  Molecules   by  Dr.  Ty  C.M.  Hoffman     Slide  1   All  of  the  biological  macromolecules  are  built  from  smaller  subunits.  Each  subunit  features  -­‐H  and     -­‐OH  substituents  located  somewhere  on  the  subunit.  This  allows  for  assembly  or  disassembly  of   macromolecules  via  two  classes  of  chemical  reactions:   • In  a  dehydration  reaction,  two  subunits  are  joined  after  one  subunit  is  stripped  of  -­‐OH  and  the   other  subunit  is  stripped  of  -­‐H.  The  -­‐OH  and  the  -­‐H  that  are  removed  form  H2O  (water),  which  is   why  the  reaction  is  so  named.   • In  a  hydrolysis  reaction,  a  molecule  is  split  into  smaller  particles.  One  of  the  smaller  particles  is   supplied  with  -­‐H  to  satisfy  the  valence;  the  other  is  supplied  with  -­‐OH.  The  -­‐H  and  -­‐OH  come   from  water,  which  is  required  for  a  hydrolysis  reaction.     Slide  2   Monosaccharides  are  simple  (one  subunit)  sugars.  Monosaccharides  can  be  classified  on  the  basis  of   the  number  of  carbon  atoms  making  up  the  skeleton  or  on  the  basis  of  where  the  carbonyl  group  is   located  in  the  skeleton  (i.e.,  on  whether  the  monosaccharide  is  an  aldehyde  or  a  ketone).     Slide  3   Any  monosaccharide  can  exist  in  either  a  linear  form  or  a  ring  form,  and  the  monosaccharide  can  be   converted  back  and  forth  between  the  two  forms.  Making  the  ring  requires  breaking  the  double  bond,   so  a  monosaccharide  features  a  carbonyl  group  only  when  it  is  in  the  linear  form.     Slide  4   When  two  monosaccharides  are  in  the  ring  form,  they  can  be  bound  together  by  a  dehydration   reaction.  The  covalent  bond  that  ties  together  the  monosaccharides  is  called  a  glycosidic  linkage.  Two   linked  monosaccharides  make  up  a  disaccharide.  When  several  or  many  monosaccharides  are  linked,   a  polysaccharide  is  formed.     Slide  5   Starch  (made  by  plants)  and  glycogen  (made  by  animals)  are  both  polysaccharides  made  up  entirely   of  glucose  subunits.  Starch  and  glycogen  function  as  storage  polysaccharides,  because  excess  fuel   (glucose)  is  stored  within  the  polysaccharide  for  later  use  as  fuel.     Slides  6  &  7   Monosaccharides  (like  glucose)  can  exist  in  multiple  isomeric  forms.  If  a  plant  links  multiple  α   glucose  monomers  together,  starch  (a  storage  polysaccharide)  is  formed.  A  plant  is  also  able  to  link   many  β  glucose  monomers  together,  which  results  in  cellulose.  Cellulose  is  a  structural   polysaccharide,  because  the  glucose  monomers  have  not  been  linked  for  the  purpose  of  storing   glucose  for  later  use  as  fuel.  Rather,  in  a  structural  polysaccharide,  the  structural  strength  of  the   molecule  is  put  to  use  for  making  structural  elements  (like  wood).     Slide  8   Many  organisms  (including  humans)  are  not  able  to  produce  the  enzyme  necessary  for  digesting   cellulose,  even  though  cellulose  is  made  entirely  of  glucose  monomers.  Some  mammals,  like  cows,   house  microorganisms  in  their  digestive  tracts.  These  microorganisms  are  able  to  digest  cellulose.   This  living  arrangement  is  an  example  of  symbiosis,  because  both  organisms  benefit.  Since  one  of  the   organisms  lives  within  the  other,  the  cow/microorganism  example  is  specifically  called   endosymbiosis.     Slide  9   While  plants  can  make  structural  polysaccharides  (including  cellulose),  animals  can  make  their  own   versions  of  structural  polysaccharides,  including  chitin,  which  is  made  by  insects  to  make  the   exoskeleton  rigid.     Slide  10   A  fat  is  an  example  of  a  lipid.  Fats  are  also  called  triglycerides,  because  a  fat  molecule  is  built  by   attaching  three  fatty  acids  onto  a  single  glycerol  molecule.  Each  connection  of  a  fatty  acid  to  the   glycerol  requires  a  dehydration  reaction,  and  the  resulting  covalent  bond  is  called  an  ester  linkage.   Because  a  fatty  acid  is  made  up  almost  entirely  of  a  hydrocarbon  chain,  fats  are  excellent  fuels.     Slide  11   A  fatty  acid  can  be  classified  on  the  basis  of  absence  or  presence  of  double  bonds.   • A  saturated  fatty  acid  is  one  that  features  no  double  bonds  between  carbons  in  its  skeleton.  This   results  in  a  linear  (unbent)  shape.   • An  unsaturated  fatty  acid  is  one  that  features  at  least  one  double  bond  between  carbon  atoms.   This  results  in  a  kink,  or  bend,  which  makes  unsaturated  fatty  acids  pack  together  more  loosely   than  saturated  fatty  acids  do.   An  overall  fat  is  saturated  if  all  three  of  the  fatty  acids  are  saturated.  If  at  least  one  of  the  fatty  acids  is   unsaturated,  the  overall  fat  is  unsaturated.  Animals  make  mostly  saturated  fats,  so  animal  fat   products  (like  butter)  are  more  solid  than  liquid  at  room  temperature.  Plants  make  mostly   unsaturated  fats,  so  fat  products  derived  from  plants  are  mostly  liquid  (oils).     Slide  12   Phospholipids  are  lipids  that  are  similar  to  fats  but  different  in  an  important  way.  Whereas  a  fat  has   three  fatty  acids  connected  to  a  glycerol,  a  phospholipid  has  a  glycerol  that  is  connected  to  only  two   fatty  acids.  The  third  connection  point  on  the  glycerol  joins  to  a  phosphate  head.  This  makes  a   phospholipid  amphipathic,  which  means  that  it  is  partly  polar  and  partly  nonpolar.  The  fatty  acids   (just  like  hydrocarbons)  are  nonpolar,  and  the  phosphate  head  is  polar.  Polar  molecules  are   hydrophilic,  because  water  is  also  polar.  Nonpolar  molecules  are  hydrophobic  and  therefore  avoid   water  and  other  polar  molecules.  An  amphipathic  molecule  like  a  phospholipid  is  partly  hydrophobic   and  partly  hydrophilic.     Slide  13   When  many  phospholipids  are  in  the  presence  of  water,  the  phospholipids  arrange  themselves  into  a   membranous  bilayer  with  the  fatty  acid  tails  in  one  layer  facing  the  tails  in  the  other  layer.  The   phosphate  heads  are  facing  the  two  surfaces  of  the  bilayer.  This  arrangement  allows  the  hydrophilic   heads  to  be  near  water  on  either  side  of  the  membrane  while  allowing  the  hydrophobic  tails  to  avoid   water.  This  is  how  plasma  membranes  (and  therefore  the  first  cells)  came  into  existence.  The   phospholipid  bilayer  makes  up  the  framework  of  a  plasma  membrane,  but  a  complete  plasma   membrane  includes  other  particles  embedded  in  that  bilayer.     Slide  14   Cholesterol  is  an  important  lipid  made  by  animals.  It  is  a  component  of  plasma  membranes  (where  it   affects  the  fluidity  of  the  membrane),  and  it  serves  as  a  precursor  from  which  the  steroid  hormones   can  be  produced.     Slide  15   Any  given  protein  is  able  to  perform  its  specific  function  because  of  its  specific  shape.  Proteins   (compared  to  other  macromolecules)  have  such  a  large  variety  of  cellular  functions,  because  proteins   can  be  constructed  with  just  about  any  shape  imaginable.    
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved