Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Quantum Mechanics: Conservation & Relationships of Angular Momentum - Prof. Lucien M. Crem, Study notes of Quantum Mechanics

The concept of total angular momentum in quantum mechanics, which is the sum of orbital angular momentum l and spin angular momentum s. The significance of total angular momentum conservation in systems where the hamiltonian commutes with j and j2. It also delves into the relationship between j, l, and s, and provides examples of commuting operators for the system.

Typology: Study notes

2009/2010

Uploaded on 02/25/2010

koofers-user-38c
koofers-user-38c 🇺🇸

10 documents

1 / 5

Toggle sidebar

Related documents


Partial preview of the text

Download Quantum Mechanics: Conservation & Relationships of Angular Momentum - Prof. Lucien M. Crem and more Study notes Quantum Mechanics in PDF only on Docsity! Chapter 11 Total Angular Momentum With possibilities of both orbital L and spin S angular momentum in a system we must consider that total angular momentum J is conserved J = L + S . In a system in which the Hamiltonian commutes with J and J2 , [ H , JI ]=0 and [ H , J2 ]=0 , we need to establish how J is related to L and S. 1) Given ! L x ! L = i" ! L and ! S x ! S = i" ! S then ! J x ! J = i" ! J , ! J follows the angular momentum algebra. ! J x ! J = ! L + ! S( ) x ! L + ! S( ) = ! L x ! L i" ! L #$% + ! S x ! S i" ! S #$% + ! Sx ! L + ! Lx ! S cancel to zero # $& %& = i" ! J ! J x ! J = i" ! J QED quod erat demonstrantum 2) J2,L2!" # $ = 0 J 2commutes with L2 L2 +S2 + 2LiS , L2!" # $ = L 2,L2!" # $ =0 #$& %& + L 2,S2!" # $ =0 #$& %& + 2 S X L X ,L2!" # $ [L2,L X ]=0 #$& %& + 2 S Y L Y ,L2!" # $ [L2,L Y ]=0 #$& %& + 2 S Z L Z ,L2!" # $ [L2,L Z ]=0 #$& %& = 0 3) J2,S2!" # $ = 0 J 2commutes with S2 L2 +S2 + 2LiS , L2!" # $ = L 2,L2!" # $ =0 #$& %& + S 2,S2!" # $ =0 #$& %& + 2 L X S X ,S2!" # $ [S2,S X ]=0 #$& %& + 2 L Y S Y ,S2!" # $ [S2,L Y ]=0 #$& %& + 2 L Z S Z ,S2!" # $ [S2,L Z ]=0 #$& %& = 0 4) J2,J Z ! " # $ = 0 or J 2,J I ! " # $ = 0 I = 1,2,3 J 2commutes with J x J Y J Z L2 +S2 + 2LiS , L Z +S Z ! " # $ = L 2,L Z ! " # $ =0 #$& %& + L 2,S Z ! " # $ =0 #$& %& + S 2,L Z ! " # $ =0 #$& %& + S 2,S Z ! " # $ =0 #$& %& + 2S X L X ,L Z !" #$ =% i"L Y #$& %& + 2S Y L Y ,L Z !" #$ =+ i"L X #$& %& + 2S Z L z ,L Z !" #$ =0 #$& %& + 2L X S X ,S Z !" #$ =% i"S Y #$& %& + 2L Y S Y ,S Z !" #$ =+ i"S X #$& %& + 2L Z LS z ,S Z !" #$ =0 # $& %& = %2i"S X L Y + 2i"S Y L X % 2i"L X S Y + 2i"L Y S X = 0 J S L JZ ! S and ! L have constant projections on ! J ! Li ! J = L2 + ! Li ! S = L2 + 1 2 J2 ! L2 !S2( ) = 1 2 J2 + L2 !S2( ) = 1 2 j( j +1) + l(l +1) ! s(s +1)( )"2 = cons tan t ! Si ! J = S2 + ! Li ! S = S2 + 1 2 J2 ! L2 !S2( ) = 1 2 J2 + L2 !S2( ) = 1 2 j( j +1) ! l(l +1) + s(s +1)( )"2 = cons tan t Set of Commuting Operators for the System- Symmetries of the Hamiltonian The complete set of commuting operators is then H, J 2 , J Z , L 2 , S 2 . Each operator represents a constant of motion for the system, and each represented by a quantum number n, j, m j , l , s The most general wave function can be written ! n , j , m j ,l , s = n, j, m j , l , s = C m L ,m S L,S Clesbch"Gordan Coef! n R(r ) " l,m l Ylm #$( ) "n,ml ,ms mj =ml +ms % s,mS & S #$% H n, j, m j , l , s = En n, j, mj , l , s J2 n, j, m j , l , s = j( j +1)&2 n, j, m j , l , s J Z n, j, m j , l , s = m j & n, j, m j , l , s L2 n, j, m j , l , s = l(l +1)&2 n, j, m j , l , s S2 n, j, m j , l , s = s(s +1)&2 n, j, m j , l , s Addition of Angular Momentum ! L = ! L 1 + ! L 2 = | L 1 + ! L 2 | ........ | L 1 ! ! L 2 | ! S = ! S 1 + ! S 2 = |S 1 + S 2 | ........ |S 1 ! S 2 | J = L + S = | L + S | ........ | L ! S | m J = !J, !J +1 ......., +J = 2 j +1 states Classification of J States for the Hydrogen Atom J=L+1/2 L = 0 1 2 3 J = L +1/ 2 : 2s+1L J L = S, P, D, F J = 0 +1/ 2 J = 1/ 2 m j = ±1/ 2 2S 1/2 J = 1+1/ 2 J = 3 / 2 m j = ±3 / 2, ±1/ 2 2P 3/2, 1/2 J = 1/ 2 m j = ±1/ 2 J = 2 +1/ 2 J = 5 / 2 m j = ±5 / 2 = ±3 / 2, ±1/ 2 2D 5/2, 3/2, 1/2 J = 3 / 2 m j = ±3 / 2, ±1/ 2 2D 3/2, 1/2 J = 1/ 2 m j = ±1/ 2 2D 3/2, 1/2 e- P+ r
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved