Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Thermodynamics I Simple Equation of State and Z, Lecture notes of Thermodynamics

PV=nrrt Thermodynamics I Simple Equation of State and Z

Typology: Lecture notes

2020/2021

Uploaded on 01/27/2021

apb235
apb235 🇺🇸

5

(1)

22 documents

1 / 17

Toggle sidebar

Related documents


Partial preview of the text

Download Thermodynamics I Simple Equation of State and Z and more Lecture notes Thermodynamics in PDF only on Docsity! Handout HW 4. Due next Wednesday. • Questions on HW due today?• Finish specific heat• Phase diagrams• Revisit: the "compressed liquid approximation" and how to best approximate the enthalpy• Incompressible substance model: solids and liquids• Generalize compressibility and equations of state• How to determine if a substance can be modeled as an ideal gas○ Z, pr, Tr○ Today: • ME 291 L7 9-21-16 Wednesday, September 21, 2016 10:33 AM ME 291 - F16 Page 1 yw) = hgG) + % Or) (4-puti) | Tr compressi Le SunbtHonce Mode et solid or Diquid Tncomp => denelty , p or Spee, ( 3 pe dency pvr spac wk chanets Yn Prevlr | Ahn = Aur w Lp = Seat + vA [ah= eAT + cap] if ty 15 cost Values of Cp ¢ Cy (2) TABLE D.1_Temperature-Dependent Molar Specific Heats of Gases at Zero Pressure — SI Units mat bT+eP+aP {Tin K, Zp in ks/\kmal > K)) Temperature Error % _ Substance Formula a 6 ¢ d Range.K Max. Avg Nitrogen N 28.90 —O.1571X10? 0.8081 X10 | —2.873X 10% 273-1800 0.59 ‘Oxygen O: 25.48 1.520 10-2 0.7155 10-8 131210 273-1800 1.19 Air 28.11 0.1967 x 10? 0.4802 X 10" = 1.966 10- 273-1800 0.72 Hydrogen H, 29.11 -0.1916X 10 0.4003 X 10 —0.8704X 10-* 273-1800 1.01 Carbon monoxide CO 28.16 0.1675 X 10 0.5372 10-8 2x10 273-1800 0.89 Carbon dioxide CO, 22.26 5.981 10-2 =3,501X 10-8 -7.469X 10 273-1800 0.67 Water vapor H,0 32.24 0.1923 x 10 1.05510 =3.595X 10% 273-1800 0.53 Nitric oxide NO 29.34 — —0.09395 x 107 0.9747 X 10-5 —4.187 X 10° 273-1500 0.97 Nitrous oxide N,0 24.11 5.8632X 10 — =3.562X 10-7 10.58 10 273-1500 0.59. Nitrogen dioxide NO, 29 SMSX102 — —3,52X 10% 787X 10% 273-1300 0.46 Ammonia NH 27568 «2.5630 10? 0.99072 X 10-7 —6.6909X 10- 273-1500 0.91 Sulfur Ss 2721 2218x102 =1.628X10-$ «3.986 X10 273-1800 0.99 Sulfur dioxide SO; 25.78 S.198X 102 —3812X 10 8.612X 10% 273-1800 0.45 Sulfur trioxide $0, 16.40 14.58 10% = 11.20X 10-8 32.42 X 10% 273-1300 0.29 Acetylene CH, 218 9.2143 X10 = -6.527X 1031821 10% 273-1500 1.46 Benzene CH, 36.22 48475X 102 -31.57X10 =—77.62X 10% 273-1500 0.34 Methanol 19.0 9.152X102 = 1.22X10-$ 8.039 X10 273-1000 0.18 Ethanol 19.9 20.9610 = 10.38X 10-3 -20.05X 10% 273-1500 0.40 Hydrogen chloride 30.33 —0.7620 107 1327X 10-3 -4.338X 10% 273-1500 0.22 ‘Methane 19.89 5024x102 1.269X10-$ = 11.01 X 10% 273-1500 1.33 Ethane 6.900 17.27X 10? 6.406 X 10-7 7.285 X 10% 273-1500 0.83, Propane — 4.04 3048x1072 =15.72X 10-8 31.74 K 10 273-1500 0.40 n-Butane 3.96 B71SX 102 -18.34X 10S 3500 X 10 273-1500 0.54 i-Butane CH = -7.913 41.60 102 = 23.01 10-3 49.91 X10 273-1500 0.25 mPentane GH 6.774 4543x102 246X103 42.29 X 10% 273-1500 0.56 mHexane CH 6.938 5522x102 = 28.65X 10S 57.69X 10% 273-1500 0.72 Ethylene GH, 3.95 15.64X 107 — —8.344X 10-* 1767X 10% 273-1500 0.54 Propylene Hs 3.15 2B83X 107? -121SX 10S 2462X 10% __ 273-1500 0.73 0.17 Data from B. G. Kyle, Chemical and Process Thermodynamics, Prentice-Hall, Englewood Clif. N., 1984 (used with permission). Table B-10 Specific heats of selected liquids Table B-11 Specific heats of selected solids (P = 1 atm) Substance State ¢p. Btu/(Ibm-R) Substance T,°C_— cp, cal(g*K) Substance T, Cp call(g-K) Water 1 atm, 32°F 1.007 Ice 0.168 Lead 0.00001 Latm, 77°F 0.98 0.262 0.0073 atm, 212°F 1.007 0.392 0.0283 Ammonia sat, 0°F 1.08 0.468 coz eae ie 0.500 0.0320 Freon 12 sat, —40°F o211 Aurainam 0.0059 ons sal. OF 0217 0.076 Iron 20 0.107 sat, 120°F 0.244 tae Silver 20 0.0588 Benzene | atm, 60°F 043 x Sodium 2» 0.295 { atm, 150°F 0.46 Tungsten 2 0.034 Light oil 1 atm, 60°F 03 liao aoe ie uals Graphite 20 0.7 — Wood 20 oz Rubber 20 oss Mica 20 021 1000 Based on values from Handbook of Chemistry and Physics, American Rubber Company. ME 291 - F16 Page 5 Phase diagrams Wednesday, September 21, 2016 11:02 AM ME 291 - F16 Page 6 Phase Diagrams Substance that Expands upon Freezing, such as H2O Pe = 22.09 MPa (3204 Ibifin.2) 2 E & 1.014 bar (14.7 Ibffin.?) E 2 (a) Specific volume Critical Liquid point Melting ‘Vaporization, g Condensation p 2 2| sola z vi Sublimation “Triple point Y#POF é Temperature Saleen a {e) ME 291 - F16 Page 7 ME 291 Thermodynamics I Some Simple Equations of State Ideal Gas Relation — Physical model: molecules are small compared to the distance between molecules (they have negligible volume), and there are no intermolecular forces... all collisions are clastic. Applics to gases only and valid when P > Per and T > 1.4 Ter (general guideline). PY=nRT- or = PV=mRT or Pv=RT n= number of moles of the gas; m= mass of the gas; R =universal gas constant; R=specitic gas constant= R/M M= molecular weight of gas Internal energy- ideal gas: u =u(T) (function of temperature only) ay = c, -(= = since u(T) only — du=c,dT — |u,-uy =fdu =|c,dT lar), af : Enthalpy- ideal gas: h=ut+?v=u(1)+R1 (function of temperature only) oh c, -(2 -4 since h(1) only dh-c,dl’ > |h,-h,=[dh=[e,d7 or), also, Gi HU pie aR dt dt The van der Waals Equation — accounts for some intermolecular forces, so valid for gases at high pressure, a RT, QTR = > b= a= v-b w 8P,, 64P. The Redlich-Kwong Equation of State — valid for gases above the critical temperature. RT Ong p= - V— Bre vv Dg IT where dpe = 0.4275R°12* / P,, and Dey = 0.0867KT,, / P, ME 291 - F16 Page 10 Benedict-Webb-Rubin Equation of State — used primarily for hydrocarbons over a large range of temperatures and pressures. pafl, [ase — Ay -— a3) + (bRT - af 1 y T KY Here A,,.By,C,,a,b,¢,@, and y are constants. These constants are given in Table C.5 of Fundamentals of Engineering Thermodynamics, 2! ed., by Howell and Buckius. The Virial Equation — general form of an equation of state; basic form derived from statistical thermodynamics. B, C, etc. are functions the temperature. RT RIB RTC = + + v v v P Principle of Corresponding States Idea — all gascous substances obey the same general equation of state when expressed in terms of their critical properties. Z=Z(Pq.Tp) Z is called the compressibility factor Prand Tp are the reduced pressure and reduced iemperature, respectively. > sce compressibility charts Determination of Z is an excellent way to ascertain if a gas can be considered ideal (if Z = 1) , and how to modify the ideal gas equation if it is not. Incompressible Liquids and Solids v= constant > ¢, =¢, =c du =c,dT =cdT and u,—u, =!) cd? The enthalpy is #=u+ Py.so dh = du + Pdv + vdP Since dv = 0,dh = caT + vdP and hy —h, =P cdT +P, — P) =u, —u, +V(P,-P) ME 291 - F16 Page 11 The "Mole" Wednesday, September 21, 2016 10:38 AM ME 291 - F16 Page 12 Z Charts Wednesday, September 21, 2016 10:38 AM ME 291 - F16 Page 15 Z= Po/RT Z= Po/RT 0 05 10 15 20 25 30 35 inydrocarbons | 40 45 50 55 60 65 10 Reduced preaure. P* Figure 8-9. Demonstration of the principle of corresponding states FIG. B-14a Generalized compressibility chart—low-pressure rat nge. Data from L. C. Nelson and E. F. Obert, Gen- eralized Compressibility Charts, Chem. En., vol. 61, P. 203, 1964. Note: v/v, = P.v/RT, ME 291 - F16 Page 16 70 T/T, = 15.0) TABLE ¢.5_ Empirical Constants for the Benedict-Webb-Rubin Equation Ao Nem /kg?_lbf-fe*/ibm* By om /kg #/lbom q N-m*-K2/kg? Tot fe“? /lm? 731.195, 430.550 302.865 249,391 3918.49 2307.33 2498.75 2.65735 X10 4.25667 x 10 | 0.889635 x 10” 1.98649 X 10 3.18205 X 10 | 1.69071 x 10" 2.08914 x 10 2.01509 10" x107 2.51642 Xx 10" © 2.20855 X 10> 2.65194 x 10” X10 2.55256 X10" 2.06958 X 107 2.98871 x 10” 2.14127 10% 3.43000 X 1077 | 2.98168 x 10” 2.22006 X 10> 3.55620 X 10 | 3.40357 x 10” 316% 10° 17426 X YO" 3.48283 X 10-2 4.13424 X 107 497242 1057.02 - | 2.06498 10% 3.30778 x.10-7, | 4.53487 “1.98756 X 10 — 3.18377 X 10 | 4.79543, a 6 € Gas Formuta | Nem?/kg? _ Ibf-ft”/Ibm* m*/kaq? ft /om Nem? K2/kg? bf ft?-"R?/Ibm? ‘Methane cH, 1.21466 104.270 1.31523 X 10° 3.37476 X 10° 0.62577 X 10° 1.74047 X 107 Ethylene CH, L919 102.256 1,09451 X 10% 2.80842 Xx 107 0.97139 x 10° 2.70175 X 10° Ethane . 3.16097 X 107? 1.28892 1.23191 X 107% 18582 X 10-* 3.04271 x 107 1.28545 x 10-3 _ 3.29835 X 107 EB C10t < 1.63610 X 10° 1.87887 X 10° TABLE C.5 Empirical Constants for the Benedict-Webb-Rubin Equation (Continued) @ 7 Gas Formula m*/kg? ft?/Ibm? mt /kg? ft*/Ibm? ‘Methane CH, 30.1853 X10 12.4068 X 10+ | 23.3469 x10~* 5.99061 X 10° Ethylene CH, 8.08173 X 10% 3.32175 X10 | 11.7469 X10 — 3.01415 X 10 Ethane GH, 8.97220 X 10 3.68775 X 10+ 13.0701 XI 3.35367 X 107 5.16963 X 10° 5.62184 X 10% ” po] 4.33983 a For SI units, R is Pa-m?/(kg-K) or J/(kg-K), P in Pa, » in m?/kg, and Tin K 2.12482 X10 | 9.41616 X 10 231069 x 10+ | 10.0799 x 10~ 1.86472 x 10~* 538K For USCS units, R is in ft Ibf/(Ibm-"R), Pin Ib(/A?, vin f?/Ibm, and T in “R. ‘Si data, a corrected, from Ernest Cravalho and Joseph L. Smith, Engineering Thermodynamics, Pitman, Marshfield, Mass, 1981 (used with permission). ME 291 - F16 Page 17 2.41610 X 107 2.58641 X 107 2.28573 X 107 4.39605 X 107 4.55052 X 10° 5.22574 X10"
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved