Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Nonlinear Systems and Control: Tracking, Feedback Linearization, and Sliding Mode Control, Slides of Nonlinear Control Systems

The tracking control of nonlinear systems using feedback linearization and sliding mode control. The concept of a siso relative-degree ρ system, the normal form, and the requirement for the reference signal. It also explains the goal of the control, the dynamics of the error system, and the local and global tracking. An example is provided to illustrate the concepts.

Typology: Slides

2011/2012

Uploaded on 07/11/2012

dikshan
dikshan 🇮🇳

4.3

(4)

70 documents

1 / 11

Toggle sidebar

Related documents


Partial preview of the text

Download Nonlinear Systems and Control: Tracking, Feedback Linearization, and Sliding Mode Control and more Slides Nonlinear Control Systems in PDF only on Docsity! Nonlinear Systems and Control Lecture # 35 Tracking Feedback Linearization & Sliding Mode Control – p. 1/11 Docsity.com SISO relative-degree ρ system: ẋ = f(x) + g(x)u, y = h(x) f(0) = 0, h(0) = 0 LgL i−1 f h(x) = 0, for 1 ≤ i ≤ ρ − 1, LgL ρ−1 f h(x) 6= 0 Normal form: η̇ = f0(η, ξ) ξ̇i = ξi+1, 1 ≤ i ≤ ρ − 1 ξ̇ρ = L ρ fh(x) + LgL ρ−1 f h(x)u y = ξ1 f0(0, 0) = 0 – p. 2/11 Docsity.com v = −Ke ⇒ ė = (Ac − BcK) ︸ ︷︷ ︸ Hurwitz e lim t→∞ e(t) = 0 ⇒ lim t→∞ [y(t) − r(t)] = 0 e(t) is bounded ⇒ ξ(t) = e(t) + R(t) is bounded What about η(t)? η̇ = f0(η, ξ) Local Tracking (small ‖η(0)‖, ‖e(0)‖, ‖R(t)‖): Minimum Phase ⇒ The origin of η̇ = f0(η, 0) is asymptotically stable ⇒ η is bounded for sufficiently small ‖η(0)‖, ‖e(0)‖, and ‖R(t)‖ – p. 5/11 Docsity.com Global Tracking (large ‖η(0)‖, ‖e(0)‖, ‖R(t)‖): What condition on η̇ = f0(η, ξ) is needed? Example 13.21 ẋ1 = x2, ẋ2 = −a sin x1 − bx2 + cu, y = x1 e1 = x1 − r, e2 = x2 − ṙ ė1 = e2, ė2 = −a sin x1 − bx2 + cu − r̈ u = 1 c [a sin x1 + bx2 + r̈ − k1e1 − k2e2] ė1 = e2, ė2 = −k1e1 − k2e2 See simulation in the textbook – p. 6/11 Docsity.com Sliding Mode Control ẋ = f(x) + g(x)[u + δ(t, x, u)], y = h(x) Lgh(x) = · · · = LgL ρ−2 f h(x) = 0, LgL ρ−1 f h(x) ≥ a > 0 η̇ = f0(η, ξ) ξ̇1 = ξ2 ... ... ξ̇ρ−1 = ξρ ξ̇ρ = L ρ fh(x) + LgL ρ−1 f h(x)[u + δ(t, x, u)] y = ξ1 e = ξ − R – p. 7/11 Docsity.com s = (k1e1 + · · · + kρ−1eρ−1) + eρ = ρ−1 ∑ i=1 kiei + eρ ṡ = ρ−1 ∑ i=1 kiei+1+L ρ fh(x)+LgL ρ−1 f h(x)[u+δ(t, x, u)]−r (ρ)(t) u = − 1 LgL ρ−1 f h(x) [ ρ−1 ∑ i=1 kiei+1 + L ρ fh(x) − r (ρ)(t) ] + v ṡ = LgL ρ−1 f h(x)v + ∆(t, x, v) ∣ ∣ ∣ ∣ ∣ ∆(t, x, v) LgL ρ−1 f h(x) ∣ ∣ ∣ ∣ ∣ ≤ ̺(x) + κ0|v|, 0 ≤ κ0 < 1 – p. 10/11 Docsity.com v = −β(x) sat ( s ε ) , ε > 0 β(x) ≥ ̺(x) (1 − κ0) + β0, β0 > What properties can we prove for this control? – p. 11/11 Docsity.com
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved