Docsity
Docsity

Prepare for your exams
Prepare for your exams

Study with the several resources on Docsity


Earn points to download
Earn points to download

Earn points by helping other students or get them with a premium plan


Guidelines and tips
Guidelines and tips

Trigonometric Formula Sheet, Exams of Trigonometry

Trigonometric Formula Sheet Definition of the Trig Functions

Typology: Exams

2022/2023

Available from 03/26/2024

star_score_grades
star_score_grades 🇺🇸

3.8

(4)

190 documents

Partial preview of the text

Download Trigonometric Formula Sheet and more Exams Trigonometry in PDF only on Docsity! 1 2 2 2 (x, y) 1 y θ x Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: Unit Circle Definition Assume θ can be any angle. 0 < θ < π or 0◦ < θ < 90◦ y hypotenuse θ adjacent opposite x sin θ = opp hyp csc θ = hyp opp sin θ = y 1 csc θ = 1 y cos θ = adj hyp sec θ = hyp adj cos θ = x 1 sec θ = 1 x tan θ = opp adj cot θ = adj opp tan θ = y x cot θ = x y sin θ, ∀ θ ∈ (−∞, ∞) cos θ, ∀ θ ∈ (−∞, ∞) Domains of the Trig Functions csc θ, ∀ θ /= nπ, where n ∈ Z sec θ, ∀ θ n + 1 π, where n ∈ Z tan θ, ∀ θ n + 1 π, where n ∈ Z cot θ, ∀ θ nπ, where n ∈ Z Ranges of the Trig Functions −1 ≤ sin θ ≤ 1 −1 ≤ cos θ ≤ 1 −∞ ≤ tan θ ≤ ∞ csc θ ≥ 1 and csc θ ≤ −1 sec θ ≥ 1 and sec θ ≤ −1 −∞ ≤ cot θ ≤ ∞ Periods of the Trig Functions The period of a function is the number, T, such that f (θ +T ) = f (θ ) . So, if ω is a fixed number and θ is any angle we have the following periods. 2πsin(ωθ) ⇒ T = ω 2πcos(ωθ) ⇒ T = ω π 2πcsc(ωθ) ⇒ T = ω 2πsec(ωθ) ⇒ T = ω π tan(ωθ) ⇒ T = ω cot(ωθ) ⇒ T = ω r 2 ± 2 2 2 2 2 2 2 2 2 2 2 Identities and Formulas Tangent and Cotangent Identities Half Angle Formulas sin θ tan θ = cos θ cos θ cot θ = sin θ sin θ = ± 1 − cos(2θ) 2 Reciprocal Identities cos θ = ± r 1 + cos(2θ) s 1 − cos(2 θ ) Pythagorean Identities sin2 θ + cos2 θ = 1 tan2 θ + 1 = sec2 θ 1 + cot2 θ = csc2 θ Even and Odd Formulas Sum and Difference Formulas sin(α ± β) = sin α cos β ± cos α sin β cos(α ± β) = cos α cos β ∓ sin α sin β tan(α β) = tan α ± tan β 1 ∓ tan α tan β Product to Sum Formulas 1 sin(−θ) = − sin θ cos(−θ) = cos θ tan(−θ) = − tan θ Periodic Formulas If n is an integer sin(θ + 2πn) = sin θ cos(θ + 2πn) = cos θ tan(θ + πn) = tan θ csc(−θ) = − csc θ sec(−θ) = sec θ cot(−θ) = − cot θ csc(θ + 2πn) = csc θ sec(θ + 2πn) = sec θ cot(θ + πn) = cot θ sin α sin β = 2 [cos(α − β) − cos(α + β)] 1 cos α cos β = 2 [cos(α − β) + cos(α + β)] 1 sin α cos β = 2 [sin(α + β) + sin(α − β)] 1 cos α sin β = 2 [sin(α + β) − sin(α − β)] Sum to Product Formulas sin α + sin β = 2 sin α + β cos α − β sin(2θ) = 2 sin θ cos θ cos(2θ) = cos2 θ − sin2 θ sin α − sin β = 2 cos α + β sin α − β cos α + cos β = 2 cos α + β cos α − β = 2 cos2 θ − 1 = 1 − 2 sin2 θ 2 tan θ cos α − cos β = −2 sin 2 α + β 2 sin 2 α − β 2 tan(2θ) = 1 − tan2 θ Degrees to Radians Formulas If x is an angle in degrees and t is an angle in radians then: Cofunction Formulas sin π − θ = cos θ csc π − θ = sec θ cos π − θ = sin θ sec π − θ = csc θ π t = πx ⇒ t = 180◦t and x = tan π − θ = cot θ tan θ = ± 1 + cos(2θ) Double Angle Formulas 180◦ x 180◦ π sin θ = 1 csc θ csc θ = 1 sin θ cos θ = 1 sec θ sec θ = 1 cos θ tan θ = 1 cot θ cot θ = 1 tan θ 2 2 2 2 = = = 2 5 β a c γ α Inverse Trig Functions Definition θ = sin−1(x) is equivalent to x = sin θ Inverse Properties These properties hold for x in the domain and θ in the range θ = cos−1(x) is equivalent to x = cos θ θ = tan−1(x) is equivalent to x = tan θ Domain and Range sin(sin−1(x)) = x cos(cos−1(x)) = x tan(tan−1(x)) = x sin−1(sin(θ)) = θ cos−1(cos(θ)) = θ tan−1(tan(θ)) = θ Function θ = sin−1(x) θ = cos−1(x) θ = tan−1(x) Domain −1 ≤ x ≤ 1 −1 ≤ x ≤ 1 −∞ ≤ x ≤ ∞ Range π π — 2 ≤ θ ≤ 2 0 ≤ θ ≤ π π π — < θ < Other Notations sin−1(x) = arcsin(x) cos−1(x) = arccos(x) 2 2 tan−1(x) = arctan(x) Law of Sines, Cosines, and Tangents b Law of Sines Law of Tangents sin α sin β sin γ a − b tan 1 (α − β) a b c Law of Cosines a + b b − c tan 1 (α + β) tan 1 (β − γ) a2 = b2 + c2 − 2bc cos α = b + c 2 tan 1 (β + γ) b2 = a2 + c2 − 2ac cos β a − c = tan 1 (α − γ) c2 = a2 + b2 − 2ab cos γ a + c 6 tan 1 (α + γ) 1 4 7 √ −a = i √ a, a ≥ 0 Complex Numbers i = √ −1 i2 = −1 i3 = −i i4 = 1 (a + bi)(a − bi) = a2 + b2 (a + bi) + (c + di) = a + c + (b + d)i (a + bi) − (c + di) = a − c + (b − d)i (a + bi)(c + di) = ac − bd + (ad + bc)i |a + bi| = √ a2 + b2 Complex Modulus (a + bi) = a − bi Complex Conjugate (a + bi)(a + bi) = |a + bi|2 DeMoivre’s Theorem Let z = r(cos θ + i sin θ), and let n be a positive integer. Then: Example: Let z = 1 − i, find z6. zn = rn(cos nθ + i sin nθ). Solution: First write z in polar form. r = √ (1)2 + (−1)2 = √ 2 θ = arg(z) = tan−1 −1 = − π Polar Form: z = √ 2 cos − π + i sin − π 4 4 Applying DeMoivre’s Theorem gives : z6 = √ 2 6 cos 6 · − π + i sin 6 · − π 4 4 = 23 cos − 3π + i sin − 3π 2 2 = 8(0 + i(1)) = 8i − − − − 10 More Conic Sections Hyperbola Standard Form for Horizontal Transverse Axis : (x h)2 a2 − (y k)2 b2 = 1 Standard Form for V ertical Transverse Axis : (y k)2 a2 − (x h)2 b2 = 1 Where (h, k)= center a=distance between center and either vertex Foci can be found by using b2 = c2 − a2 Where c is the distance between center and either focus. (b > 0) Parabola Vertical axis: y = a(x − h)2 + k Horizontal axis: x = a(y − k)2 + h Where (h, k)= vertex a=scaling factor f (x) = sin(x) 1 √3 2 √2 2 1 2 0 πππ 643 π 2 2π3π5π 3 4 6 π 7π5π4π 64 3 3π 2 5π7π 11π 3 4 6 2π −1 2 — 2 √2 — 2 -1 √3 Example : sin   5π √ 4 = − 2 2 f (x) = cos(x) 1 √3 2 √2 2 1 2 0 πππ 643 π 2 2π3π5π 346 π 7π5π4π 643 3π 2 5π7π 11π 346 2π −1 2 — 2 √2 — 2 -1 √3 Example : cos   7π √ 6 = − 3 2 11 f (x) x f (x) x π π f (x) = tan x √3 1 √3 3 −π — − −5π3π2π πππ 0 ππ 64 π 3 2π3π5π 643 — − −346 π — 3 √ 346 3 −1 −√3 12 − 2 f (x) 2 x
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved