Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

FOTOSINTESIS: DIFERENCIAS EN LAS VIAS METABOLICAS C3, C4 Y CAM, Resúmenes de Matemáticas

FOTOSINTESIS: DIFERENCIAS EN LAS VIAS METABOLICAS C3, C4 Y CAM

Tipo: Resúmenes

2011/2012

Subido el 03/10/2022

andres-botero-5
andres-botero-5 🇨🇴

1 documento

1 / 4

Toggle sidebar

Vista previa parcial del texto

¡Descarga FOTOSINTESIS: DIFERENCIAS EN LAS VIAS METABOLICAS C3, C4 Y CAM y más Resúmenes en PDF de Matemáticas solo en Docsity! FOTOSINTESIS: DIFERENCIAS EN LAS VIAS METABOLICAS C3, C4 Y CAM Por: Dr. A. Benavides Tésis: Las modificaciones en estructura y fisiología de las plantas C4 y CAM frente a las C3 son el resultado de la presión selectiva del ambiente sobre un carácter complejo: uso eficiente del agua frente a la asimilación de CO2. Argumento: La ruta metabólica C3 se encuentra en los organismos fotosintéticos como las cianobacterias, algas verdes y en la mayoría de las plantas vasculares. Las vías metabólicas C4 y CAM se encuentran solo en plantas vasculares. Las vías C4 y CAM involucran mecanismos especializados para la concentración y transporte del CO2 a los sitios de fijación por RUBISCO (vía C3), pagando un precio extra en términos de ATP por unidad de CO2 fijado, sin presentar ninguna modalidad o mejora bioquímica en términos de la eficiencia de RUBISCO sobre la vía C3. De las especies estudiadas hasta el momento aproximadamente el 89% son C3 , el 10% son CAM y el restante 1% son C4 ; adicionalmente se conocen unas cuantas especies que son intermedias C3-C4. Porqué la presencia de un mecanismo energéticamente más costoso para la fijación de CO2 por RUBISCO? La respuesta aparentemente se relaciona con la presión selectiva que ejercen ciertos ambientes en cuanto a la relación CO2 fijado vs. H2O transpirada o Eficiencia en el Uso del Agua (EUA). Puede demostrarse que incluso bajo condiciones ambientales favorables una planta C3 pierde por los estomas aproximadamente 100 moléculas de H2O por molécula de CO2 que entra por ellos. En zonas con aporte constante de agua este hecho no representa un problema pero en regiones áridas y semiáridas si llega a serlo. Por otro lado, dado que la planta (a través de la actividad estomática) responde finamente al balance entre CO2 ganado/H2O perdida, aquellas condiciones que lleven a un balance desfavorable como alta temperatura e irradiancia, alto déficit de presión de vapor entre mesófilo y atmósfera, aporte limitado de agua por el suelo o conductividad eléctrica muy alta en la solución de agua del suelo, tenderán al incremento en la restricción difusiva del agua con el cierre estomático parcial o total. Sin embargo dicho cierre estomático también impacta negativamente la difusión de CO2 lo cual se traduce en aumento en la actividad fotorespiratoria de la planta, cosa que no ocurre en las plantas C4 o CAM. En diferentes estudios ha sido demostrado que bajo condiciones de enriquecimiento atmosférico con CO2 o mantenimiento de niveles óptimos de humedad en el suelo las plantas C4 no muestran ventaja significativa sobre las C3 (Black, 1986). En aquellos ambientes con restricciones hídricas constantes, estacionales o diarias como son las zonas áridas, semiáridas y ambientes epifíticos las plantas C4 y CAM funcionan como especialistas de grán éxito con mayor EUA en comparación con las plantas C3. Las modificaciones bioquímicas con lo cual se consigue esto se relacionan con el aumento en la cantidad y eficiencia de acción de la anhidrasa carbónica (AC), la cual según Badger y Price (1994) tiene importancia marginal en las plantas C3, y con la acción de un sistema de bombeo del CO2 conseguido a través de la acción de la fosfoenolpiruvatocarboxilasa (PEPc) y ATPasas de membrana. Para las plantas C4 el resultado de las modificaciones evolutivas es que el CO2 es fijado en dos compartimientos diferentes: en el mesófilo el CO2 es fijado como HCO3 - por la AC para ser tomado a continuación por la PEPc que incorpora el carbono en un ácido C4. Este ácido C4 es transportado hacia la vaina del haz vascular por la acción de acarreadores específicos ATP dependientes en donde es descarboxilado para liberar CO2 que es fijado por RUBISCO e incorporado en el ciclo de Calvin-Benson. Con la acción de este mecanismo de concentración y bombeo de CO2 hacia los sitios de fijación por RUBISCO la planta es capaz mantener tasas altas de asimilación de CO2 en presencia de baja concentración intercelular de dicho gas. A pesar de estas adaptaciones las plantas C4 no son más tolerantes al estrés hídrico severo que las C3 ; esto es, el mecanismo C4 es una adaptación encaminada al uso eficiente del agua, no a la tolerancia al estrés hídrico. Por otro lado las plantas CAM si muestran adaptaciones para tolerar estrés hídrico severo: suculencia de tejidos o suculencia celular, disminución drástica en la relación área/volumen de los órganos fotosintéticos, cierre estomático diurno que limita fuertemente la pérdida de agua combinado con apertura nocturna con lo cual no se compromete la ganancia de CO2 , presencia de sistemas radicales extensivos, etc. En las plantas CAM el resultado de las modificaciones evolutivas es que el CO2 es fijado en dos etapas separadas temporalmente, más que físicamente como ocurre en las C4. Durante la noche la apertura de los estomas permite la difusión de CO2 que es fijado como HCO3 - por la AC y es tomado por la PEPc que lo incorpora en ácidos C4 que se acumulan en las vacuolas vía una bomba
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved