Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

Notas sobre Teoria Cinetica de Gases, Apuntes de Física

Desarrollo breve sobre la teoria cinetica de los gases ideales y su analisis energetico.

Tipo: Apuntes

2019/2020

Subido el 12/11/2020

stefano-rossi-34
stefano-rossi-34 🇦🇷

1 documento

1 / 29

Toggle sidebar

Documentos relacionados


Vista previa parcial del texto

¡Descarga Notas sobre Teoria Cinetica de Gases y más Apuntes en PDF de Física solo en Docsity! Teoría cinética de los gases ideales Física II ECEN Licenciatura en Física- Profesorado en Físca. 2020 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) Introducción general El punto de vista de la termodinámica clásica es enteramente macroscópico. Los sistemas se describen en base a sus propiedades macroscópicas, tales como la presión, la temperatura y el volumen. No formula hipótesis microscópicas y es una ciencia puramente empírica. Sin embargo, hacia fines del siglo XVIII la química había establecido firmemente la hipótesis atómica, la cual empezaba a adoptarse también en la física. En efecto (Wikipedia) “En 1738 Daniel Bernoulli publicó la obra Hydrodynamica, sentando las bases de la teoría cinética de los gases y planteando los argumentos, que todavía se utilizan hoy en día, de que los gases se componen de un gran número de moléculas que se mueven en todas las direcciones, que su impacto en una superficie causa la presión del gas que sentimos, y que lo que se experimenta en forma de calor es simplemente la energía cinética de su movimiento. La teoría no fue aceptada de inmediato, en parte debido a que la conservación de la energía todavía no se había establecido y a que los físicos no sabían cómo las colisiones entre moléculas podrían ser perfectamente elásticas.” Siguiendo la Wikipedia, podemos ver que “Otros pioneros de la teoría cinética (no considerados por sus contemporáneos) fueron Mikhail Lomonosov (1747), Georges-Louis Le Sage (ca. 1780, publicado en 1818), John Herapath (1816) y John James Waterston (1843), que conectaron sus investigaciones con el desarrollo de las explicaciones mecánicas de la gravitación. En 1856, August Krönig (probablemente después de leer un artículo de Waterston) creó un modelo cinético simple de gas, que sólo consideraba el movimiento de traslación de las partículas.” “En 1857 Rudolf Clausius, según sus propias palabras independientemente de Krönig, desarrolló una versión de la teoría similar, pero mucho más sofisticada, que incluía no solo movimientos moleculares translacionales, como Kronig, si no también rotacionales y vibracionales. En este mismo trabajo introdujo el concepto de camino libre medio de una partícula. En 1859, después de leer un artículo de Clausius, James Clerk Maxwell formuló la distribución de Maxwell de las velocidades moleculares, lo que le dio la proporción de moléculas que tienen una determinada velocidad en un rango específico. Esta fue la primera ley estadística en la física.” Sin embargo, es interesante lo que tardó la hipótesis atómica en ser aceptada en la comunidad de la física, ya que también según Wikipedia: “En el comienzo del siglo XX, muchos físicos empezaron a considerar que los átomos eran construcciones puramente hipotéticas, en lugar de objetos reales. Sin embargo, un importante punto de inflexión fueron los artículos sobre el movimiento browniano de Albert Einstein (1905) y Marian Smoluchowski (1906), que lograron hacer ciertas predicciones cuantitativas precisas basándose en la teoría cinética.” Según parece, Wilhelm Ostwald, uno de los líderes de la escuela 1 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) 3. Las moléculas no ejercen fuerzas entre sí, ni están sometidas a ninguna fuerza externa, excepto cuando chocan. 4. Los choques de moléculas entre sí y con las paredes son perfectamente elásticos y tiene duración despreciable. Se considera que las paredes del recipiente son perfectamente lisas y por lo tanto en los choques de las moléculas con las paredes, no hay cambio en la velocidad tangencial. 5. En ausencia de fuerzas externas, las moléculas están distribuidas uniformemente por todo el recipiente (homogeneidad). Si N es el numero total de moléculas en un recipiente de volumen V, el número de moléculas por unidad de volumen será nV = N/V. 6. Todas las direcciones de las velocidades moleculares son igualmente probables (isotropía). 7. Las moléculas obedecen las leyes de Newton del movimiento. Podemos condensar todas estas hipótesis en decir que vamos a definir un gas ideal como un gran número de moléculas no interactuantes entre sí, que solo tienen energía cinética y sufren choques elásticos, y que ocupan un volumen mucho mayor al volumen de ellas mismas, con condiciones de isotropía y homogeneidad. A ellas aplicaremos las leyes de Newton. Figura 1 : Colisiones moleculares con las paredes del recipiente Puede decirse que un gas ideal es un gas diluido, de manera que la distancia media entre moléculas es grande comparada con el alcance de las fuerzas intermoleculares (del orden de 10-10m). La interacción entre moléculas es muy poco frecuente. Se puede representar un gas ideal como un conjunto de moléculas puntuales, sin interacción apreciable entre ellas, más allá del choque elástico, que 4 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) se desplazan libremente en todas direcciones con velocidades diferentes del orden de cien metros por segundo (figura 1). La presión de un gas ideal Considérese un gas ideal compuesto por N moléculas encerrado en un recipiente de volumen V. En un extremo del recipiente hay un pistón móvil (figura 2). Se quiere evaluar la fuerza que se ejerce sobre el pistón debido al hecho de que existen moléculas en movimiento en la caja. A medida que las moléculas se mueven en el interior de la caja con diferentes velocidades, golpean contra el pistón. Si en el exterior hubiese vacío, cada vez que el pistón fuese golpeado adquiriría un pequeño momento y gradualmente sería empujado hacia fuera. Para evitar que el pistón se mueva, el mismo debe ser sostenido con una fuerza F. Figura 2: Cambio en la velocidad de las moléculas del gas después de chocar con una pared. ¿Cuál debe ser el valor de la fuerza aplicada para equilibrar los múltiples choques de las moléculas? En cada colisión hay una transferencia de momento lineal (cantidad de movimiento) entre el pistón y cada una de las moléculas que impactan sobre él. La fuerza será la cantidad de movimiento entregada en cada choque por el número de colisiones por unidad de tiempo que las moléculas realizan con la pared. Como las colisiones son totalmente elásticas, si una partícula llega al pistón con una cierta velocidad v, con componentes vx, vy, vz, rebotará invirtiendo su 5 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) componente x de velocidad, aunque tal proceso no tendrá ningún efecto sobre vy ni vz. Por lo tanto el cambio del momento lineal de la partícula será: (1) Esto significa que la cantidad de movimiento transferida al pistón en cada choque será 2mvx, ya que la cantidad de movimiento total se conserva. Para conocer el momento total transferido al pistón, se debe calcular el número de choques que se producen en un intervalo de tiempo t. Para encontrar cuántas moléculas golpean el pistón es necesario notar que, si una partícula tiene una dada velocidad dirigida hacia el pistón, lo golpeará siempre que esté lo suficientemente cerca. Si está demasiado lejos, hará solamente una parte del camino hacia el pistón en ese intervalo de tiempo, pero no lo alcanzará. Por lo tanto, sólo aquellas moléculas que estén a una distancia vxt (o menor) del pistón llegarán al mismo en el intervalo de tiempo t (ver figura 3) . El número de colisiones en ese intervalo de tiempo es igual al número de moléculas que se encuentran en una región dentro de la distancia vx t. El área del pistón es A, el volumen ocupado por las partículas que llegarán al pistón es vx.t.A. Por lo tanto este número de partículas es el producto de ese volumen multiplicado por el número de átomos por unidad de volumen, es decir vx.t.A.nV. Figura 3: cuántas moléculas chocan contra un área A en un tiempo Δt? 6 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) ⟨ε k ⟩ es la energía cinética media de una molécula. Comparando la ecuación (8) con la ecuación de estado de un gas ideal, pV = nRT, se concluye que la energía cinética media de traslación de las moléculas es directamente proporcional a la temperatura absoluta del gas ideal: ⟨εk ⟩= 1 2 m vrms 2 = 3 2 n N R T (9) Puede considerarse a la ecuación (9) como una definición de la temperatura del gas en base a una teoría microscópica o teoría cinética. El número de moles n en la expresión (9) puede escribirse como el número total de moléculas dividido el numero de Avogadro (número de moléculas por mol, No), obteniéndose la siguiente expresión: ⟨εk ⟩ = 3 2 R N 0 T (10) La relación R/N0 se denomina constante de Boltzmann o constante universal de los gases por molécula. Se la identifica con la letra kB y en el Sistema Internacional de medida, tiene el valor kB = 1.38x10-23 J / molécula K. (11) Reescribiendo la ecuación (10) se tiene: ⟨εk ⟩= 1 2 m vrms 2 = 3 2 kB T (12) Esta ecuación muestra que la temperatura absoluta de un gas ideal es directamente proporcional a la energía cinética media de traslación de sus moléculas, sin importar a qué presión y volumen están. En promedio, las partículas tienen mayores energías cinéticas cuanto más caliente esté el gas. Es importante observar también que sólo interviene la energía cinética de traslación y no otras energías, como la energía de rotación o vibración. La razón para ello es que el resultado se obtiene de la cesión de cantidad de movimiento a las paredes, a la cual sólo contribuye el movimiento de traslación.  Ejemplo 1: ¿Puede una única partícula tener temperatura? Cada partícula en un gas tiene energía cinética. Más aún, la ecuación (12) establece una relación entre la energía cinética promedio por partícula y la temperatura de un gas ideal. Es válido concluir que una única partícula tiene una temperatura? No. 9 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) Se sabe que un gas contiene una gran cantidad de moléculas con una distribución de velocidades. Por ello, las partículas no tienen todas la misma energía cinética, sino que poseen una distribución de energías desde valores cercanos a cero hasta valores extremadamente grandes. Si cada partícula tuviese una temperatura asociada con su energía cinética, habría un amplio rango de temperaturas diferentes dentro del gas. Sin embargo esto no es así, ya que en el equilibrio térmico el gas tiene una sola temperatura, temperatura que puede registrarse con un termómetro colocado dentro del gas. Así, la temperatura es una propiedad que caracteriza al gas globalmente, un hecho que es inherente en la relación (12). El término vrms es una velocidad promedio de la partícula y por ello ½ mvrms2 es la energía cinética promedio y es característica de todo el gas. Como la temperatura absoluta es proporcional a ésta, no puede ser atribuida a cada partícula del gas individualmente. Se concluye entonces que una única partícula no tiene una temperatura. Si dos gases ideales tienen la misma temperatura, la relación (12) indica que la energía cinética promedio de cada una de las partículas del gas es la misma. Sin embargo, las velocidades promedio de las diferentes partículas no son las mismas, ya que las masas pueden ser diferentes. • Ejemplo 2: La velocidad de las moléculas en el aire El aire es principalmente una mezcla de nitrógeno N2 (masa molecular = 28.0 u) y oxígeno O2 (masa molecular =32.0 u). Suponiendo que cada uno se comporta como un gas ideal, determinar la velocidad cuadrática media vrms de las moléculas de oxígeno y nitrógeno cuando la temperatura del aire es de 293K. La velocidad media vrms puede calcularse a partir de la ecuación (12). La energía cinética media es 3/2 kT, y es la misma para ambos tipos de moléculas a la misma temperatura. Sin embargo, las masas de las moléculas del nitrógeno y oxígeno son diferentes. La energía cinética promedio por partícula es: ⟨εk ⟩ = 3 2 kBT (13) Mediante el número de Avogadro y la masa molecular se calcula la masa de cada molécula: m (N2)= masa molecular número moléculas(N o) = 28g /mol 6.022 x1023mol−1 =4 .65x10−26 Kg m (O2)= 32g /mol 6. 022 x1023mol−1 =5 .31 x10−26 Kg Una vez conocida la masa, se calcula la velocidad vrms: 10 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) v rms(N 2) = √2⟨εk ⟩m = √2(6 . 07 x10 −21 J ) 4 . 65x10−26 Kg = 511 m /s v rms(O2) = √2 ⟨εk ⟩m = √ 2(6 .07 x10−21J ) 5 .31 x10−26 Kg = 478 m /s En el caso de una molécula de hidrógeno, cuya masa es 3.34x10-27 kg, su vrms es 1940 m/s. Cuanto más pequeñas sean las masas de las moléculas, mayor será la velocidad que posean. Las consecuencias de este hecho se analizan en el ejemplo 3. • Ejemplo 3: Por qué no hay hidrógeno en nuestra atmósfera? El hidrógeno, que debe haber estado presente en los primeros años de la atmósfera terrestre, ha desaparecido de la misma. Uno se pregunta como pudo producirse el escape hacia el espacio exterior si las moléculas de hidrógeno deberían ser atraídas hacia el centro de la tierra por una fuerza gravitacional. La respuesta está en el concepto de velocidad de escape. Si un objeto se mueve alejándose de la tierra con una velocidad igual o superior a la velocidad de escape, dejará la tierra para no retornar. La velocidad de escape es de aproximadamente 11200 m/s, por lo tanto si la molécula de hidrógeno posee una velocidad igual o superior a ésta, se alejará de la atmósfera. Aunque la velocidad media es sólo un 17% de la velocidad de escape, algunas moléculas se mueven a velocidades varias veces la vrms , según la distribución de velocidades de Maxwell. Estas velocidades son las que producen el escape hacia el espacio. En los billones de años transcurridos desde la formación de la tierra, ha habido suficiente tiempo para que el hidrógeno se escape. Energía interna de un gas ideal La energía interna U de una sustancia puede escribirse, en general, como U=Ek (CM )+E p( int ) donde Ek (CM ) es la energía cinética total respecto al centro de masas, mientras que U=Ek (CM )+E p( int ) es la energía debida a la interacción entre las moléculas mediante fuerzas (en general electromagnéticas). Como vimos, la escencia de la teoría cinética es ir al límite de los gases reales en el que el efecto de las fuerzas intermoleculares es relativamente débil, de modo que la energía potencial interna 11 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) energía, como la magnética por ejemplo, la energía total de un gas queda descrita, con buena aproximación, en términos de las ya mencionadas. Aunque estos términos tienen orígenes diversos, todos tienen la misma forma matemática, es decir, la energía asociada con cualquier grado de libertad es una función cuadrática de la variable requerida para especificar dicho grado de libertad. Una molécula monoatómica considerada como un punto geométrico sólo puede tener energía cinética de traslación, f=3. En cambio una molécula diatómica (con una estructura análoga a la de una pesa constituida por dos partículas puntuales unidas por una barra metálica) puede tener también energía cinética de rotación. En general, su eje de rotación tendría cualquier dirección en el espacio y su vector velocidad angular tres componentes rectangulares. En ese caso la molécula contaría con tres grados de libertad de rotación, y el número total de grados de libertad sería f = 6. Sin embargo se suele eliminar un grado de libertad rotacional, ya que dos masas puntuales unidas por una barra (línea) rígida no tiene momento de inercia respecto del eje que une las masas, por lo que f=5. Su energía sería: ε = 1 2 m v x 2 + 1 2 m v y 2 + 1 2 m v z 2 + 1 2 I A ωA 2 + 1 2 IB ωB 2 donde IA e IB son los momentos de inercia respecto a los ejes A y B alrededor de los cuales gira la molécula con velocidades respectivas A y B. Pero si la temperatura es tan alta que lo que representamos como una barrera rígida que une los átomos de la molécula diatómica comienza a vibrar, a la energía anterior debemos sumarle las energías correspondientes a una frecuencia de vibración. Su energía  puede escribirse: ε = 1 2 m v x 2 + 1 2 m v y 2 + 1 2 m v z 2 + 1 2 I A ωA 2 + 1 2 IB ωB 2 + 1 2  ωξ 2 + 1 2 K ξ2 donde la coordenada  es el desplazamiento de los átomos a partir de su separación correspondiente al equilibrio, y  es la derivada de este desplazamiento respecto al tiempo. Estos dos últimos términos son los que representan la contribución a la energía de una frecuencia de vibración. Notar que esta es una vibración alrededor del centro de masas de la molécula. 14 Una molécula diatómica rígida gas diatómico sin vibración. Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) Mediante la mecánica estadística se puede demostrar que cuando el número de partículas es grande y la mecánica Newtoniana es válida, todos los términos de las expresiones anteriores tienen el mismo valor promedio, el cual depende sólo de la temperatura. Este teorema, conocido como teorema de la equipartición de la energía, afirma entonces que la energía disponible solamente depende de la temperatura y se distribuye en partes iguales entre cada una de las formas independientes mediante las cuales las moléculas pueden absorber energía. Cada uno de esos modos independientes de absorción de energía se llaman grados de libertad. Este principio llamado equipartición de la energía fue deducido por Clerk Maxwell. La energía media total de una partícula con f grados de libertad es entonces ε̄ = f/2 kBT, y la energía total de N moléculas es: N ε̄ = f 2 N kB T = f 2 n R T (17) Pero hay que destacar que la temperatura sigue siendo una medida tan solo de la energía cinética de traslación de las moléculas del gas. Los grados de libertad de rotación, o vibración alrededor del centro de masa, no contribuyen a la temperatura. Teoría clásica de los calores específicos Considerando el modelo molecular de un sistema se puede identificar su energía interna como la suma de las energías de cada una de las moléculas que lo constituyen. Por lo tanto la energía total asociada a los f grados de libertad de cada una de las N moléculas de un gas se puede igualar con la energía interna U: U = f 2 N kB T = f 2 n R T (18) Aqui se refuerza lo que se remarcó antes respecto a que la temperatura es una medida tan solo de la energía cinética de traslación. Para una misma temperatura un gas con más grados de libertad tiene más energía porque además de energía de traslación debe tener en igual medida energía para los otros grados de libertad. Según la hipótesis anterior, se tiene que el calor específico molar a volumen constante es: cv = ( ∂ u∂ T )v = d dT ( f 2 R T ) = f2 R 15 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) y dado que para un gas ideal c p=cV +R=( f 2 +1)R , la razón entre los calores específicos es: γ = c p cv = ( f /2) R + R ( f /2) R = f + 2 f (19) En tanto los principios de la termodinámica dan una expresión para la diferencia entre los calores específicos a presión y a volumen constante, la teoría molecular junto con el principio de equipartición predice el valor real de los calores específicos y su relación , en función del número de grados de libertad f y de la constante universal R determinada experimentalmente. De acuerdo con esta teoría son todos constantes e independientes de la temperatura. Lo que podemos interpretar de la fórmulas para cV y cP está otra vez directamente relacionado con que la temperatura del gas está relacionada tan solo con la energía cinética de traslación. Para ser concretos, si se entrega una misma cantidad de calor δQ a un gas con f=3 y a otro con f=5, el gas con f=5 distribuirá esa energía entre más grados de libertad que el de f=3, y entonces los grados de libertad de traslación recibirán menos energía en el gas con f=5 que en el de f=3. Por lo tanto aumentará menos la temperatura en el gas con f=5 que en el de f=3. Como c = δQ/dT, al ser menor dT en el gas de f=5 que en el f=3, su cV o su cP serán mayores. En los gases monoatómicos las moléculas tienen sólo movimiento de traslación. Como f= 3, se tiene que: cv = f 2 R = 3 2 R = 1. 5 R ; c p = f + 2 2 R = 5 2 R = 2.5 R γ = c p cv = 5 3 = 1.67 . Estos valores concuerdan satisfactoriamente con los valores experimentales de los gases monoatómicos dados en la Tabla I. Además los calores específicos de estos gases son prácticamente independientes de la temperatura. Tabla I Tipo de gas Gas cp /R cv /R (cp - cv)/ R  = cp / cv Monoatómico He 2.50 1.506 0.991 1.66 A 2.51 1.507 1.005 1.67 Diatómico H2 3.47 2.47 1.00 1.40 16 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) adecuada del comportamiento del gas a temperaturas altas, el comportamiento a bajas temperaturas no es el correcto, ya que los experimentos muestran que a bajas temperaturas los calores específicos de todas las sustancias tienden a cero. Estas dificultades se eliminan cuando se toman en consideración los principios de la mecánica cuántica y la mecánica estadística. Finalmente, destacamos que también nos debe quedar la idea de que en general el calor específico da una medida de cuales son los grados de libertad activos en un sistema, y como ello varía con la temperatura. Entendiendo la expansión libre y el trabajo de un gas desde la teoría cinética. Consideremos una expansión libre, como la del experimento de Joule-Gay Lussac. Ya sabemos que la energía libre U no varía si el gas es ideal, pues Q=W=0 en este proceso. Como podemos entender lo que pasa desde la teoría cinética? Está claro que, al expandirse contra el vacío, las moléculas del gas no chocan contra nada, por ende no pierden nada de energía al expandirse (solo persisten los choques entre ellas y contra las paredes, que no cambian la energía total del sistema). Así es que la energía interna U no varía. Por otro lado, al aumentar el volumen, baja la densidad de moléculas nV y por lo tanto baja la cantidad de choques por unidad de tiempo. Así, aunque cada choque transmite, en promedio, la misma cantidad de momento contra las paredes, como el número de choques baja, baja la presión. Por otro lado, si consideramos un gas que se expande pero ahora empujando un pistón con masa (también podemos suponer presión externa atmosférica), vemos que con cada choque contra el pistón las moléculas le transmiten momento, con el cual el pistón se mueve. Así en la expansión, el gas ahora sí pierde energía, por lo que su temperatura baja. La atmósfera exponencial En las secciones anteriores se discutieron algunas propiedades de los gases formados por un gran número de átomos o moléculas que chocan entre sí, pudiéndose afirmar que las propiedades macroscópicas de la materia pueden ser explicadas en término del movimiento de sus partes. El objetivo ahora es conocer más acerca de las posiciones de las moléculas y de sus velocidades. Se busca respuesta a preguntas tales como: 19 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) • ¿cómo están distribuidas las moléculas en el espacio cuando no hay fuerzas actuando sobre ellas? • ¿cómo están distribuidas en cuanto a velocidad? • ¿cuántas moléculas se mueven con una velocidad, por ejemplo, tres veces mayor que la velocidad cuadrática media o cuántas se mueven con un cuarto de la misma? Si bien las magnitudes de las velocidades de las moléculas varían en un gran intervalo, hay una distribución característica de las velocidades moleculares de cada gas. El problema que se analizará en esta sección trata sobre la distribución de las moléculas en la atmósfera. Sirvió de base para la obtención de la distribución de velocidades de Maxwell. Se hace la suposición de que hay equilibrio térmico, ausencia de vientos y perturbaciones en la atmósfera, y campo gravitatorio uniforme. Si se supone que la temperatura es la misma a cualquier altitud, el número de moléculas por unidad de volumen, nV, decrece con la altura según la ley de las atmósferas (ejemplo 5). Sin embargo, (según se desprende del análisis desarrollado en secciones previas y de la interpretación de la mecánica estadística de la temperatura) la ley de distribución de velocidades, cuya forma se supone desconocida, debe ser la misma a todas las alturas ya que sólo depende de la temperatura. Esta ley determina el ritmo al cual se mueven verticalmente la moléculas en la atmósfera a cualquier altitud y, por lo tanto, debe estar íntimamente relacionada con la disminución de nV con la altura. Analizando en detalle esta relación se puede deducir la ley de distribución de la velocidad.  Ejemplo 5 A partir de las leyes de la hidrostática y de la ecuación de estado de un gas ideal se puede deducir una expresión de la razón de las presiones correspondientes a dos alturas diferentes en un gas ideal a temperatura uniforme. Expresando la relación de la presión con la altura en forma exponencial se obtiene la ley de las atmósferas, aplicable a la atmósfera terrestre si se considera el aire como un gas ideal. La ecuación que indica cómo la presión de un fluido en equilibrio estático varía con la altura sobre algún nivel de referencia es: dp dh =−ρ g ; a medida que la altura h aumenta (dh positiva), la presión p disminuye (dp negativa). La densidad  de un gas ideal es: 20 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) ρ= Nm V =nV m donde m es la masa de cada partícula. De la ecuación de estado del gas ideal pV=NkT, se puede obtener el número de partículas por unidad de volumen: nV = p/kBT (20) Reemplazando esta expresión en la expresión de la densidad, se obtiene la variación de la presión con la altura: dp dh =− p m g kT (21) o equivalentemente dp p =− m g kT dh . Suponiendo que g y T son constantes, e integrando esta expresión desde el valor po en el punto h = 0 (el nivel del mar) hasta el valor p en el punto h (por encima del nivel del mar), se obtiene la siguiente expresión: ln p po =− m g k T h ; La presión p varía de forma exponencial con la altura y según la ley de las atmósferas: p = po e −(mg /kBT ) h A temperatura constante T la densidad de moléculas nV es directamente proporcional a la presión (nV = p/kBT). Combinando estas ecuaciones, se obtiene la siguiente expresión, que es una ley que relaciona la densidad de moléculas con la altura: ln n no =− m g k T h (22) no es el número de moléculas por unidad de volumen a la altura de referencia. Si se tienen distintos tipos de moléculas con masas diferentes, disminuyen con exponenciales diferentes. Las más pesadas disminuirán con la altura más rápidamente que las livianas. Por lo tanto se espera que, debido a que el oxígeno es más pesado que el nitrógeno, a medida que se va más y más arriba en una atmósfera con nitrógeno y oxígeno, la proporción de nitrógeno aumentará. Esto realmente no sucede, dado que no es una atmósfera isotérmica. Sin embargo hay una tendencia de las sustancias más livianas como el hidrógeno a predominar a alturas muy grandes en la atmósfera, porque las masas más pequeñas continúan 21 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) dependen sólo de la temperatura. Es de notar entonces que aquí se está dando la distribución de velocidades de traslación de las moléculas del gas, y con Ecin nos referimos a esta energía. El valor del número total de moléculas N de la muestra se determina sumando en conjunto (por integración) el número de moléculas presente en cada intervalo diferencial de la velocidad desde cero hasta infinito, es decir N =∫N v dv (24) La figura 7 es una representación gráfica de la distribución de Maxwell- Boltzmann de las velocidades de las moléculas de oxígeno a dos temperaturas diferentes, 300K y 1200K . 0 200 400 600 800 1000 1200 1400 1600 1800 2000 dN / d v v rcm v m/s 1200 K Velocidad más probable v p cercana a los 800 m/s 300 K Velocidad más probable v p cercana a los 400 m/s Figura 7: Distribución de Maxwell de las velocidades de 106 moléculas de oxígeno a dos temperaturas diferentes. A cualquier temperatura, el número de moléculas en un intervalo de velocidades dado v, aumenta conforme lo hace la velocidad hasta alcanzar un máximo (la velocidad más probable vp) y después decrece asintóticamente hasta cero. La curva de distribución no es simétrica respecto a la velocidad más probable. Esto es así ya que la menor velocidad debe ser cero, en tanto que no hay un límite clásico a la mayor velocidad que pueda alcanzar una molécula. En este caso, la velocidad 24 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) promedio v̄ es algo mayor que el valor más probable. La velocidad cuadrática media vrcm, por ser la raíz cuadrada del promedio de la suma de los cuadrados de las velocidades, es aún mayor. Al aumentar la temperatura, también lo hace la velocidad promedio v̄ , la velocidad cuadrática media vrcm y más velocidad más probable vp, de acuerdo con la interpretación microscópica de la temperatura. En este caso, el intervalo de velocidades típicas es mayor, de modo que la distribución se ensancha. Como el área bajo la curva de la distribución (que es el número total de moléculas de la muestra) sigue siendo la misma, la distribución debe hacerse más plana a medida que la temperatura aumenta, como se puede observar en la figura 7.  Ejemplo 6: Determinación de la velocidad promedio v̄ , la velocidad cuadrática media vrcm y la velocidad más probable vp de las moléculas de un gas en función de los parámetros del gas. La cantidad N(v)dv es el número de partículas en la muestra cuya velocidad está comprendida entre v y v+dv, y su valor queda determinado en la ecuación (23).  La velocidad promedio v̄ se determina en la forma común: el número de partículas en cada intervalo de velocidad se multiplica por la velocidad v característica del intervalo; a continuación se suman estos productos sobre todos los intervalos de la velocidad y se divide por el número total de partículas. Reemplazando la suma por una integral, se obtiene: v̄ = ∫N v v dv N Sustituyendo la expresión de N(v) dv e integrando, se obtiene: v̄ = 1.59 √ kT m  La velocidad cuadrática media vrcm queda determinada por: v 2 = ∫N v v 2dv N de donde se obtiene v rcm = √v 2 = √ 3 kT m = 1. 73 √ kT m  La velocidad más probable vp es la velocidad a la cual N(v) tiene su valor máximo. Se obtiene planteando que dN(v)/dv = 0. 25 Teoría cinética de los gases ideales Cátedra Física II (Licenciatura en Física- Profesorado en Física) Usando el valor de N(v) de la ecuación (23), se puede demostrar que v p = √ 2kT m = 1. 41 √ kT m . En la figura 6 se muestran vp, v̄ y vrcm a 300K en la distribución de velocidades moleculares del oxígeno. El exponente de e en la ecuación (23) puede escribirse del siguiente modo: − 1 2 mv2 kT =− Ecin kBT . El numerador del exponente de la ecuación (23) es la energía cinética de traslación un átomo o molécula del gas. Por lo tanto en el exponente se compara la energía cinética de traslación con la “energía térmica” del gas, es decir que el producto kBT proporciona un nivel de referencia para las energías moleculares. La distribución de las velocidades moleculares, como se puede ver en la ecuación (23) depende de la masa de la molécula así como de la temperatura. Mientras menor sea la masa, mayor será la proporción de moléculas con gran velocidad a una dada temperatura. Análogamente al análisis desarrollado en la sección previa, se puede ver que es más fácil que a grandes alturas, el hidrógeno se escape de la atmósfera y no el oxígeno o el nitrógeno. La distribución de velocidades de las moléculas de un líquido también se parece a la curva de la figura 7. El fenómeno de evaporación en un líquido puede entenderse a partir de esta distribución, en base al hecho de que algunas moléculas en el líquido tienen más energía que otras. Así, las moléculas en el líquido que tienen mayor velocidad pueden escapar de la superficie (evaporarse) a temperatura muy por debajo del punto normal de ebullición. Solamente esas moléculas pueden vencer las fuerzas de atracción de las moléculas de la superficie y escapar por evaporación. La energía cinética de las moléculas restantes se reduce, quedando el líquido a una temperatura menor. Por eso la evaporación es un fenómeno de enfriamiento. La teoría cinética también explica como es posible transportar energía o cantidad de movimiento. Las moléculas que se caracterizan por determinada propiedad como por ejemplo tener mayores velocidades a causa de un calentamiento local, llevarán mediante las colisiones, esta propiedad especial y la alejarán de su lugar. De hecho, llevan la energía térmica de un lugar a otro:  Si alguna de las moléculas afectan el sentido del olfato (por ejemplo las moléculas de un perfume), llevarán el aroma al moverse y chocar. El movimiento de esta propiedad se llama “transporte” de la propiedad (energía térmica, olor, 26
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved