Docsity
Docsity

Prepara tus exámenes
Prepara tus exámenes

Prepara tus exámenes y mejora tus resultados gracias a la gran cantidad de recursos disponibles en Docsity


Consigue puntos base para descargar
Consigue puntos base para descargar

Gana puntos ayudando a otros estudiantes o consíguelos activando un Plan Premium


Orientación Universidad
Orientación Universidad

El Sistema Muscular: Funciones, Tipos y Actividad, Resúmenes de Anatomía Aplicada

FisiologíaNeurocienciaAnatomía humana

El sistema muscular humano, sus funciones básicas, los tipos de músculos y su actividad. El sistema muscular contribuye a la homeostasis, produce movimientos, regular el volumen de órganos, moviliza sustancias y genera calor. Se distinguen los músculos esqueléticos, que producen movimientos y mantienen la postura, y los músculos lisos, que impulsan sustancias a lo largo de un tracto determinado. Se explica la contracción muscular, el tono muscular y el efecto del ejercicio.

Qué aprenderás

  • ¿Qué funciones desempeña el sistema muscular en el organismo?
  • ¿Cómo se diferencian los músculos esqueléticos y lisos?
  • ¿Cómo se produce la contracción muscular y qué tipos de contracciones existen?

Tipo: Resúmenes

2019/2020

Subido el 08/12/2021

eymi-paredes
eymi-paredes 🇪🇨

3 documentos

1 / 8

Toggle sidebar

Documentos relacionados


Vista previa parcial del texto

¡Descarga El Sistema Muscular: Funciones, Tipos y Actividad y más Resúmenes en PDF de Anatomía Aplicada solo en Docsity! SISTEMA MUSCULAR El sistema muscular contribuye a la homeostasis al estabilizar la postura, producir movimientos, regular el volumen de los órganos, movilizar sustancias dentro del organismo y generar calor. Las funciones de los músculos Producir movimientos es una función común de fodos los tipos de músculos, pero los músculos esqueléticos desempeñan también otros tres papeles importantes en el organismo: mantener las posturas corporales, estabilizar las articulaciones y producir calor. Veámoslas con más detalle. Producción de movimiento Casi todos los movimientos del cuerpo humano son resultado de la contracción de los músculos. La movilidad. del cuerpo en su conjunto refleja la actividad de los músculos esqueléticos, responsables de la locomoción (caminar, nadar o esquiar, por ejemplo) y del trabajo con las manos. Nos permiten responder con velocidad a los cambios del entorno. Por ejemplo, su velocidad y su potencia nos permiten apartamos de un salto de la trayectoria de un coche que va a toda velocidad. Asimismo, nos permite expresar nuestros sentimientos y emociones con el lenguaje corporal mediante sonrisas y muecas. Éstos difieren de los músculos lisos de las paredes de los vasos sanguíneos y de los músculos cardiacos del corazón, los cuales trabajan juntos para hacer circular la sangre y mantener la presión sanguínea, y de los músculos lisos de otros órganos huecos que impulsan los fluidos (orina, bilis) y otras sustancias (comida, un bebé) a través de los canales corporales internos. Mantenimiento de la postura Rara vez somos conscientes del trabajo que realizan los músculos esqueléticos a la hora de mantener la postura corporal. Lo cierto es que ellos trabajan continuamente realizando un pequeño ajuste tras otro de forma que podamos mantener una postura erguida o nos mantengamos erguidos al sentarnos, a pesar de la gravedad constante a la que estamos sometidos. Estabilización de las articulaciones Al tiempo que los músculos esqueléticos tiran de los huesos para producir movimientos, también estabilizan las articulaciones del esqueleto. De hecho, los tendones de los músculos tienen una gran importancia a la hora de reforzar y estabilizar las articulaciones que tienen superficies articuladas con un encaje deficiente (como la articulación del hombro). Generación de calor La cuarta función de los músculos, la generación de calor corporal, es consecuencia de la actividad muscular. Puesto que se utiliza ATP para conferir potencia a las contracciones musculares, cerca de tres cuartos de su energía se libera en forma de calor. Este calor resulta fundamental a la hora de mantener una temperatura corporal normal. TIPOS DE MÚSCULOS Existen tres tipos: esquelético, cardiaco y liso. Como se puede observar en la Tabla 6.1, éstos difieren en la estructura celular, en la ubicación en el cuerpo y en el modo en que se estimulan para contraerse. > Músculos esqueléticos Las fibras musculares esqueléticas están empaquetadas en los órganos denominados músculos esqueléticos, que se adhieren al esqueleto corporal. Puesto que los músculos esqueléticos cubren nuestros “soportes” óseos, ayudan a formar unos contornos más lisos en nuestro organismo. Las fibras musculares esqueléticas son células grandes, multinucleares y con forma de puro. Son el tipo más grande de fibras musculares; algunas con un tamaño de unos 30 cm de largo. De hecho, las fibras de los músculos grandes sometidos a un trabajo intenso, como los músculos antigravitatorios de la cadera, son tan grandes y gruesas que pueden verse a simple vistaLos músculos esqueléticos también se conocen como músculos estriados (porque sus fibras FIGURA 6.1 Envoltura de teido conectivo presentan unas rayas visibles), o como músculos voluntarios (porque — “eto=músculos esquetétcos son el único tipo de músculos sometidos a un control consciente). Sin embargo, resulta importante reconocer que los músculos esqueléticos a menudo se activan también mediante reflejos (sin nuestra “orden voluntaria”). El tejido muscular esquelético se puede contraer rápidamente y con una gran fuerza, pero se cansa con facilidad y debe descansar después de breves periodos de actividad. Las fibras musculares esqueléticas, como la mayoría de las células, son blandas y sorprendentemente frágiles, si bien los músculos esqueléticos pueden producir una potencia tremenda; de hecho, la fuerza que generan, como cuando levantamos una pesa, es a menudo mucho mayor que la requerida para esa tarea. ¿Por qué? La razón por la que no se rompen cuando producen dicha fuerza es que miles de sus fibras están unidas en un bloque por el tejido conectivo, que proporciona fuerza y sirve de sustento a todo el músculo (Figura 6.1). Cada fibra muscular se encuentra envuelta en una delicada envoltura de tejido conectivo, denominada endomisio. Varias de estas fibras musculares se encuentran envueltas a su vez por una membrana fibrosa más gruesa denominada perimisio para formar un haz de fibras denominado fascículo. Muchos fascículos están unidos por un “abrigo” aún más grueso de tejido conectivo denominado epimisio, que cubre todo el músculo. Los epimisios se mezclan con los fuertes tendones, con forma de cuerda, o con las planas aponeurosis que adhieren de forma indirecta los músculos a los huesos, los cartílagos o las cubiertas de tejido conectivo. A parte de la función de anclaje de los músculos, los tendones desempeñan otras funciones. Las más importantes son proporcionar durabilidad y conservar el espacio. En su mayoría, los tendones son fibras colagénicas resistentes que pueden cruzar partes salientes de los huesos que rasgarían los tejidos musculares más delicados. > Músculo cardiaco.- El músculo cardiaco se encuentra sólo en un lugar del cuerpo: el corazón, donde constituye la mayor parte de las paredes éste. El corazón actúa como una bomba que impulsa la sangre por los vasos sanguíneos a todos los tejidos del cuerpo. El músculo cardiaco es como los esqueléticos, en el sentido de que tiene estriaciones, y como los lisos, en el sentido de que es involuntario y no se puede controlar de forma consciente. Algunas palabras clave para recordar este tipo de músculo son: cardíaco, estriado e involuntario. Las fibras cardiacas están protegidas por pequeñas cantidades de tejidos conectivos blandos, disponen en espiral o en grupos de ocho, como se (» muestra en la Figura 6.2b. Cuando el corazón se contrae, sus cámaras internas se vuelven más pequeñas, e impulsan la sangre hacia las grandes arterias que salen del corazón. Hay que recordar que las fibras del músculo cardiaco son células ramificadas que se unen mediante juntas especiales denominadas discos intercalados Estas dos caracteristicas estructurales y la disposición en espiral de los grupos de músculos del corazón permiten que la actividad cardiaca esté altamente coordinada. Los músculos a menudo se contraen a un ritmo continuo fijado por el pacificador “interno” del corazón, pero el corazón también puede verse estimulado por el sistema nervioso para cambiar a “la marcha másalta” durante pequeños periodos, como cuando corremos para coger el autobús. Como puedes observar, cada uno de los tres tipos de músculos presenta una estructura y una función apropiada para su labor en el organismo. No obstante, dado que el término sistema muscular se aplica especificamente a los músculos esqueléticos, en este capítulo nos centraremos en este tipo de músculos. 1 Comparación de los músculos esqueléticos, cardíacos y lisos Característica Esqueléticos Cardiacos lisos Grupos de músculos cardiacos Ubicación en el cuerpo Acheridos a los hues En las paredes del corazon Principalmente en las paredes el caso de los organos visos tacales, ala piel huecos tno el corazon Cstulas multinucie as, muy largas y nic estracones claramente visibles Componentes Epimisio, perimisio del tejido conectivo — y endomisio Endomisio- Epimisio: <Q Endomisid| Regulación Voluntaria, a traves de los involuntaria; el corazon ti de la contracción controles dor: tambien cont Velocióaa De lenta rapida de contracción ACTIVIDAD DE LOS MÚSCULOS ESQUELÉTICOS Estimulación y contracción de las células de los músculos esqueléticos Las células musculares presentan algunas propiedades funcionales especiales que les permiten cumplir con sus tareas. La primera de éstas es la excitabilidad, también denominada receptividad o irritabilidad, que es la capacidad de recibir y responder a estímulos. La segunda, la contractilidad, es la capacidad de encogerse (por la fuerza) cuando se estimula a los músculos de forma adecuada. La tercera, la extensibilidad es la capacidad de las células musculares de estirarse, mientras que la elasticidad es la capacidad de retraerse y recuperar su longitud original después de ser estiradas. El estímulo nervioso y el potencial de acción Para contraerse, las células de los músculos esqueléticos deben ser estimuladas por impulsos nerviosos. Una neurona motora (célula nerviosa) puede estimular unas pocas células musculares o cientos de ellas, en función del músculo del que se trate y del trabajo que realice. Una neurona y todas las células de los músculos esqueléticos que estimula constituyen una unidad motora (Figura 6.4). Cuando una extensión de la neurona larga, con forma de hilo, denominada fibra nerviosa o axón, alcanza el músculo, se ramifica en numerosas terminales del axón, cada una de las cuales forma uniones con el sarcolema de una célula muscular diferente (Figura 6.5). Estas uniones se denominan uniones neuromusculares. Aunque las terminaciones nerviosas y las membranas de las células musculares se encuentran muy cerca, nunca se tocan. El hueco existente entre ellas, el espacio sináptico, se rellena con fluido del tejido (intersticial). Médula espinal Terminales del axón en las uniones neuromusculares Fibras musculares Unidad Unidad motora motora Cuerpos Axón de una celulares neurona de la neurona motora motora Músculo A), Fibras musculares — Axón ramificado — 9. E en una unidad motora (a) FIGURA 6. 4 Unidades motoras. Cada unidad motora consta de una neurona motora y de todas las fibras musculares que ésta activa. (a) Se muestran partes de dos unidades motoras. Las neuronas motoras están localizadas en la médula espinal y sus axones se extienden hasta el músculo. Dentro del músculo cada axón se divide en un número de terminales que se distribuyen hasta las fibras musculares dispersadas por el músculo. (b) Foto de una sección de una unidad motora. CONTRACCIONES MUSCULARES ISOTÓNICAS E ISOMÉTRICAS Las contracciones isotónicas (literalmente “mismo tono” o tensión) nos resultan familiares a la mayoría de nosotros. En las contracciones isotónicas los miofilamentos realizan sus movimientos de deslizamiento de forma satisfactoria, el músculo se acorta, y se produce el movimiento. Doblar las rodillas, girar los brazos y sonreír son todos ejemplos de contracciones isotónicas. Las contracciones en las que los músculos no se acortan se denominan contracciones isométricas (literalmente “misma medida” o longitud). En las contracciones isométricas los miofilamentos de miosina “hacen girar sus ruedas” y la tensión en el músculo continúa aumentando. Intentan deslizarse, pero el músculo se opone a algunos objetos más o menos inmóviles. Por ejemplo, los músculos se contraen de forma isométrica cuando tratamos de levantar un mueble de 181 kilos. Cuando estiras un codo doblado, el triceps se contrae de forma isotónica. Pero cuando hacemos fuerza contra una pared con los codos doblados, la pared no se mueve y los triceps, que no se pueden acortar para estirar los codos, se contraen de forma isométrica. El tono muscular Existe un aspecto de la actividad muscular esquelética que no se puede controlar de forma consciente. Incluso cuando un músculo se relaja de forma involuntaria, algunas de sus fibras se contraen (primero un grupo y después otro). Su contracción no es visible, pero, como resultado de ello, el músculo permanece firme, saludable, y preparado permanentemente para la acción. Este estado de contracciones parciales continuas se denomina tono muscular. El tono muscular es el resultado de unidades motoras diferentes que están dispersas por el músculo, estimuladas por el sistema nervioso de una forma sistemática. El efecto del ejercicio en los músculos La cantidad de trabajo que realiza un músculo se refleja en forma de cambios en el propio músculo. La inactividad muscular siempre conduce a la debilidad muscular y al desperdicio del músculo. Los músculos no escapan a la máxima: “o lo usas o lo pierdes”. Por el contrario, el ejercicio regular aumenta el tamaño, la fuerza y la resistencia del músculo. No obstante, no todos los tipos de ejercicio producen estos efectos; de hecho, existen importantes diferencias en los beneficios del ejercicio. Los tipos de ejercicio aeróbicos o de resistencia, como los de una clase de aeróbic, el footing o montar en bicicleta (Figura 6.11a) dan como resultado músculos más flexibles (a) (b) y más fuertes con una mayor resistencia a la fatiga. Estos cambios se deben, al menos parcialmente, a que el suministro de sangre al músculo aumenta y las células musculares forman más mitocondrias y almacenan más oxígeno. Sin embargo, el ejercicio aeróbico tiene otros muchos beneficios: hace que el metabolismo de todo el cuerpo se vuelva más eficiente, mejora la digestión (y la eliminación), mejora la coordinación neuromuscular y fortalece el esqueleto. El tamaño del corazón aumenta (se hipertrofia), de forma que se bombea más sangre con cada latido, los depósitos de grasa se limpian de las paredes de los vasos sanguíneos, y los pulmones se vuelven más eficientes en el intercambio de gases. Estos beneficios pueden ser permanentes o temporales, en función de la regularidad y de la intensidad de los ejercicios. El ejercicio aeróbico no hace que el tamaño de los músculos aumente demasiado, aunque el
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved