Docsity
Docsity

Prepare-se para as provas
Prepare-se para as provas

Estude fácil! Tem muito documento disponível na Docsity


Ganhe pontos para baixar
Ganhe pontos para baixar

Ganhe pontos ajudando outros esrudantes ou compre um plano Premium


Guias e Dicas
Guias e Dicas

Novo Método: Síntese de Heterodímeros de Prata e Nanopartículas de Ferro, Notas de estudo de Engenharia Elétrica

A síntese de heterodímeros de prata e nanopartículas de ferro vazio utilizando a abordagem de colloidosomas. Os colloidosomas são um sistema bifásico formado pela autoagregação de nanopartículas na interface de um solvente orgânico e água, permitindo a reação heterogênea e a produção de heterodímeros de duas esferas distintas com controle simples e preciso. Os heterodímeros apresentam propriedades interessantes, como a presença de prata que ajuda na remoção de camada de isolante em nanopartículas de ferro vazio, além de oferecer uma abordagem poderosa para personalizar as propriedades de nanomateriais para uma ampla gama de aplicações.

Tipologia: Notas de estudo

2010

Compartilhado em 11/01/2010

igor-donini-9
igor-donini-9 🇧🇷

4.5

(4)

419 documentos

1 / 4

Toggle sidebar

Documentos relacionados


Pré-visualização parcial do texto

Baixe Novo Método: Síntese de Heterodímeros de Prata e Nanopartículas de Ferro e outras Notas de estudo em PDF para Engenharia Elétrica, somente na Docsity! DOI: 10.1021/la904067q ALangmuir XXXX, XXX(XX), XXX–XXX pubs.acs.org/Langmuir ©XXXX American Chemical Society Colloidosome-based Synthesis of a Multifunctional Nanostructure of Silver and Hollow Iron Oxide Nanoparticles Yue Pan,† Jinhao Gao,‡ Bei Zhang,§ Xixiang Zhang,§, ) and Bing Xu*,†,‡ †Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, ‡Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, HongKong, China, §Department of Physics, TheHongKongUniversity of Science andTechnology, ClearWater Bay, Hong Kong, China, and )Advanced Nanofabrication Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900 Kingdom of Saudi Arabia Received August 28, 2009 Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. Introduction This paper reports a facile synthesis of a sophisticated, multi- functional nanostructure that consists of a silver nanoparticle and a hollow iron oxide nanoparticle. The construction of hetero- dimers of nanoparticles consisting of two inorganic phases provides a powerful approach for tailoring the properties of nanomaterials for a wide range of applications.1 For example, the unique structure of heterodimeric nanoparticles promises many advantages in their applications in physical science and biology.2 After the elegant demonstration of heterodimers of microparticles,3 several research groups have reported the production of heterodimers of nanoparticles with two different inorganic compositions, such as FePt-CdS/CdSe, γ-Fe2O3-CdSe/ZnS, CoPt3-Au heterodimers, and dumbbell- likeAu-Fe3O4 heterodimer nanoparticles.4,5Wealso reported an efficient method to form heterodimeric nanostructures based on the reactions on the colloidosome of iron oxide nanoparticles.6 “Colloidosomes”, a unique biphasic system formed by the self- assembly of nanoparticles at the interface of an organic solvent and water, allow a heterogeneous reaction to take place on the exposed surface of the nanoparticles and to produce the hetero- dimers of two distinct nanospheres with a simple but relatively precise control.7,8 This procedure not only controls the composi- *E-mail: bxu@brandeis.edu. (1) (a) Cozzoli, P. D.; Pellegrino, T.; Manna, L. Chem. Soc. Rev. 2006, 35, 1195. (b) Tahir, M. N.; Zink, N.; Eberhardt, M.; Therese, H. A.; Kolb, U.; Theato, P.; Tremel, W. Angew. Chem., Int. Ed. 2006, 45, 4809. (c) Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Nat. Mater. 2007, 6, 692. (d) Figuerola, A.; Fiore, A.; Di Corato, R.; Falqui, A.; Giannini, C.; Micotti, E.; Lascialfari, A.; Corti, M.; Cingolani, R.; Pellegrino, T.; Cozzoli, P. D.; Manna, L. J. Am. Chem. Soc. 2008, 130, 1477. (e) Xu, C.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S. Angew. Chem., Int. Ed. 2008, 47, 173. (f) Zeng, H.; Sun, S. H.Adv. Func.Mater. 2008, 18, 391. (g) Ge, J.; Hu, Y.; Zhang, T.; Yin, Y. J. Am. Chem. Soc. 2007, 129, 8974. (h) Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. J. Am. Chem. Soc. 2008, 130, 5406. (i) Camargo, P. H. C.; Xiong, Y.; Ji, L.; Zuo, J. M.; Xia, Y. J. Am. Chem. Soc. 2007, 129, 15452. (j) Glaser, N.; Adams, D. J.; Boker, A.; Krausch, G. Langmuir 2006, 22, 5227. (k) Qiang, W.; Wang, Y.; He, P.; Xu, H.; Gu, H.; Shi, D. Langmuir 2008, 24, 606. (l) Teranishi, T.; Wachi, A.; Kanehara, M.; Shoji, T.; Sakuma, N.; Nakaya, M. J. Am. Chem. Soc. 2008, 130, 4210. (2) (a) Bao, J.; Chen, W.; Liu, T. T.; Zhu, Y. L.; Jin, P. Y.; Wang, L. Y.; Liu, J. F.; Wei, Y. G.; Li, Y. D. ACS Nano 2007, 1, 293. (b) Choi, J. S.; Jun, Y. W.; Yeon, S. I.; Kim, H. C.; Shin, J. S.; Cheon, J. J. Am. Chem. Soc. 2006, 128, 15982. (3) Lu, Y.; Xiong, H.; Jiang, X. C.; Xia, Y.N.; Prentiss,M.;Whitesides, G.M. J. Am. Chem. Soc. 2003, 125, 12724. (4) (a) Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B. J. Am. Chem. Soc. 2004, 126, 5664. (b) Yu, H.; Chen, M.; Rice, P. M.;Wang, S. X.; White, R. L.; Sun, S. H.Nano Lett. 2005, 5, 379. (c) Kwon, K.W.; Shim,M. J. Am. Chem. Soc. 2005, 127, 10269. (d) Pellegrino, T.; Fiore, A.; Carlino, E.; Giannini, C.; Cozzoli, P. D.; Ciccarella, G.; Respaud, M.; Palmirotta, L.; Cingolani, R.; Manna, L. J. Am. Chem. Soc. 2006, 128, 6690. (e) Gao, J.; Zhang, B.; Gao, Y.; Pan, Y.; Zhang, X.; Xu, B. J. Am. Chem. Soc. 2007, 129, 11928. (5) (a) Zhang, L.; Dou, Y. H.; Gu, H. C. J. Colloid Interface Sci. 2006, 297, 660. (b) Gao, J.; Zhang, W.; Huang, P.; Zhang, B.; Zhang, X.; Xu, B. J. Am. Chem. Soc. 2008, 130, 3710. (c) Xu, C. J.; Wang, B. D.; Sun, S. H. J. Am. Chem. Soc. 2009, 131, 4216. (6) Gu, H.W.; Yang, Z.M.; Gao, J. H.; Chang, C. K.; Xu, B. J. Am. Chem. Soc. 2005, 127, 34. (7) (a) Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Science 2002, 298, 1006. (b) Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299, 226. (8) (a) Binder, W. H. Angew. Chem., Int. Ed. 2005, 44, 5172. Hong, L.; Jiang, S.; Granick, S. Langmuir 2006, 22, 9495. (b) Kim, B. S.; Taton, T. A. Langmuir 2007, 23, 2198. (c) Roh, K. H.; Yoshida, M.; Lahann, J. Langmuir 2007, 23, 5683. (d) Snyder, C. E.; Yake, A. M.; Feick, J. D.; Velegol, D. Langmuir 2005, 21, 4813. (e) Sun, B.; Zhang, Y.; Gu, K. J.; Shen, Q. D.; Yang, Y.; Song, H. Langmuir 2009, 25, 5969. (f) Teo, J. J.; Chang, Y.; Zeng, H. C. Langmuir 2006, 22, 7369. (9) (a) Gu, H. W.; Ho, P. L.; Tsang, K. W. T.; Yu, C. Y.; Xu, B. J. Am. Chem. Soc. 2003, 125, 15702. Ai, H.; Flask, C.; Weinberg, B.;(b) Shuai, X.; Pagel, M. D.; Farrell, D.; Duerk, J.; Gao, J. M.Adv. Mater. 2005, 17, 1949. (c) Gu, H. W.; Xu, K. M.; Xu, C. J.; Xu, B.Chem. Commun. 2006, 941. (d)Wang, L.; Yang, Z. M.; Gao, J. H.; Xu, K.M.; Gu, H.W.; Zhang, B.; Zhang, X. X.; Xu, B. J. Am. Chem. Soc. 2006, 128, 13358. (e) Jun, Y. W.; Choi, J. S.; Cheon, J. Chem. Commun. 2007, 1203. (f) Kim, J. S.; Valencia, C. A.; Liu, R. H.; Lin, W. B. Bioconjugate Chem. 2007, 18, 333. (g) Shevchenko, E. V.; Kortright, J. B.; Talapin, D. V.; Aloni, S.; Alivisatos, A. P. Adv. Mater. 2007, 19, 4183. (h) Bin Na, H.; Lee, I. S.; Seo, H.; Il Park, Y.; Lee, J. H.; Kim, S.W.; Hyeon, T.Chem. Commun. 2007, 5167. (i) Lee, K. S.; Lee, I. S.Chem. Commun. 2008, 709. (j) Lee, J.; Lee, Y.; Youn, J. K.; Bin Na, H.; Yu, T.; Kim, H.; Lee, S. M.; Koo, Y.M.; Kwak, J. H.; Park, H. G.; Chang, H. N.; Hwang,M.; Park, J. G.; Kim, J.; Hyeon, T. Small 2008, 4, 143. (k) Latham, A. H.; Williams, M. E.Acc. Chem. Res. 2008, 41, 411. (l) Hsia, C. H.; Chen, T. Y.; Son, D. H.NanoLett. 2008, 8, 571. (m) Xu, X. L.; Friedman, G.; Humfeld, K. D.; Majetich, S. A.; Asher, S. A. Chem. Mater. 2002, 14, 1249. (n) Binks, B. P.; Desforges, A.; Duff, D. G. Langmuir 2007, 23, 1098. (o) Ge, J. P.; He, L.; Goebl, J.; Yin, Y. D. J. Am. Chem. Soc. 2009, 131, 3484. (p) Kim, D.; Lee, N.; Park,M.; Kim, B. H.; An, K.; Hyeon, T. J. Am. Chem. Soc. 2009, 131, 454. (q) Lim, J.; Eggeman, A.; Lanni, F.; Tilton, R. D.; Majetich, S. A. Adv. Mater. 2008, 20, 1721. (r) An, K.; Kwon, S. G.; Park, M.; Bin Na, H.; Baik, S. I.; Yu, J. H.; Kim, D.; Son, J. S.; Kim, Y.W.; Song, I. C.; Moon, W. K.; Park, H. M.; Hyeon, T. Nano Lett. 2008, 8, 4252. (s) Messersmith, P. B.; Textor, M. Nat. Nanotechnol. 2007, 2, 138. (t) Yu, S. Y.; Zhang, H. J.; Yu, J. B.; Wang, C.; Sun, L. N.; Shi, W. D. Langmuir 2007, 23, 7836. B DOI: 10.1021/la904067q Langmuir XXXX, XXX(XX), XXX–XXX Article Pan et al. tions of heterodimers of nanoparticles, but also allows functional molecules to be attached on specific parts of the heterodimers.6 Despite its promising potentials, this useful and versatile method remains less explored. Thus, we are interested in studying the scope of the colloidosome-based synthesis for making hetero- dimeric or hybrid nanostructures and fully characterizing the resulted nanostructures. Among various nanocrystals, magnetic nanoparticles, espe- cially iron oxide nanoparticles, have attracted broad attention because they promise new applications in the rapidly advancing field of biofunctional nanomaterials.9 Recently, Sun et al. and Alivisatos et al. have shown that Kirkendall effect10 at nanoscale can lead to the production of hollow iron oxide nanoparticles,11,12 and their works demonstrated that hollow iron oxide nanoparti- cles with controlled interior void and thickness of the shell are an important class of nanoporous materials. We have shown that hollow iron oxide nanoparticles can exhibit high relaxivity for MRI enhancement.13 These attractive features of hollow iron oxide nanoparticles make them ideal building blocks of hetero- dimeric nanostructures for the further exploration and expansion of their functions. Here, we report the use of the colloidosome approach to synthesize the heterodimers of silver and hollow iron oxide nanoparticles based on the reactions at a liquid-liquid interface. Besides being the first example of heterodimers that contain hollow nanoparticles and further demonstrating the versatility of this method for constructing sophisticated nanostructures at the liquid-liquid interface, these heterodimeric nanostructures could provide a new class of nanomaterials for useful applica- tions. Silver nanoparticles have excellent surface plasma reso- nance properties and are themselves a Raman enhancer,14 and hollow iron oxide nanoparticles are superparamagnetic at room temperature. Therefore, potentially, the silver part can serve as optical tags and the hollow iron oxide as magnetic resonance imaging (MRI) contrast and hyperthermia therapy agents. Materials and Methods General Data. Iron pentacarbonyl (Fe(CO)5), oleylamine (70%), and 1-octadecene (90%) were purchased from Sigma Aldrich, and silver nitrate fromFisherChemical. All the reactions were carried out at ambient conditions unless otherwise stated. Synthesis. Hollow iron oxide nanoparticles were synthesized using a reported procedure.13 Typically, oleylamine (0.3 mL) and 1-octadecene (20 mL) were heated at 120 C for 30 min under argon atmosphere before Fe(CO)5 (0.7 mL) was injected into the hot solution. Then, the solutionwas kept at 180 C for 20min and afforded the Fe nanoparticles as the intermediate. Then, the dispersion was moved to ambient atmosphere and heated up to 180 C with an O2 gas flow at a rate of 2 m3/h for 2 h. The Fe nanoparticles were completely oxidized to iron oxide. After the black-brown colored solution was cooled to room temperature, the hollow iron oxide nanoparticles were precipitated by adding isopropanol followedby centrifugation (6000 rpm) andwashwith pure ethanol. The hollow nanoparticles were then dispersed in hexane in the presence of oleylamine. In a typical synthesis of the heterodimers, the hollow iron oxide nanoparticles (2.5 mg) in 2 mL of hexane in the presence of oleylamine was mixed with the solution of silver nitrate (2 mL, 30 mg/mL) in a small vial. Ultrasonic emulsification afforded a stable brownoil-in-water emulsionof the twophases. Themixture was shaken frequently to make the two liquid phases to mix well. After reacting for 5 h (temperature of the vial: ≈40 C), the mixture was precipitated by adding ethanol. The heterodimers were separated by centrifugation (6000 rpm). Then, the hetero- dimers were dispersed in hexane in the presence of oleylamine. In the final step, the heterodimer nanoparticles were further purified by magnetic harvesting and redispersed in hexane for the further analysis. Characterization. The nanostructures were characterized by transmission electron microscopes (TEM) (JEOL 2010, 200 kV), high-resolution TEM, and correlative Energy-dispersive X-ray spectrometric (EDX) (JEOL 2010F, 200 kV). The UV-vis ab- sorbance spectra were obtained on a Perkin-Elmer Lambda 900 UV/vis/NIR spectrometer. The magnetic properties of the nano- structures were measured by a superconducting quantum inter- ference device (SQUID) magnetometer. Results and Discussion The construction of the heterodimeric nanoparticles involves an initial synthesis of the hollow iron oxide nanoparticles as the seeds and a subsequent reduction ofAgNO3 in the presence of the seeds. According to the typical synthetic route illustrated in Scheme 1, the followingprocess could contribute to the formation of the heterodimers: Ultrasonic agitation and frequent shaking cause the formation of a heterogeneousmicroemulsion of organic droplet in silver nitrate water solution. In this biphasic system, the hydrophobic hollow iron oxide nanoparticles self-assemble at the water-organic interface7,15 and provide the catalytic sites onto which the Agþ ions can be reduced by oleylamine16 to form silver nanoparticles. In this process, oleylamine serves as the mild reducing agent as well as the surfactant.17 Most likely, the small defects on the surfaces of the hollow iron oxide nanoparticles that are exposed to the aqueous phase catalyze the reduction of the Agþ ions to provide the initial nucleation sites of silver.18 As a result, the heterodimers with gradually grown silver spheres on the surface of the hollow iron oxide form while the reaction progresses. We used TEM to follow the progress of the synthesis and to characterize the products. TEM image in Figure 1a shows the as- synthesized hollow iron oxide nanoparticles with uniform hollow Scheme 1. Illustration of the Synthetic Steps of the Heterodimers (10) (a) Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711. (b) Gao, J. H.; Zhang, B.; Zhang, X. X.; Xu, B. Angew. Chem., Int. Ed. 2006, 45, 1220. (11) Peng, S.; Sun, S. H. Angew. Chem., Int. Ed. 2007, 46, 4155. (12) Cabot, A.; Puntes, V. F.; Shevchenko, E.; Yin, Y.; Balcells, L.; Marcus, M. A.; Hughes, S. M.; Alivisatos, A. P. J. Am. Chem. Soc. 2007, 129, 10358. (13) Gao, J. H.; Liang, G. L.; Cheung, J. S.; Pan, Y.; Kuang, Y.; Zhao, F.; Zhang, B.; Zhang, X. X.; Wu, E. X.; Xu, B. J. Am. Chem. Soc. 2008, 130, 11828. (14) Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1998, 27, 241. (15) Huang, W. A.; Lan, Q.; Zhang, Y. Prog. Chem. 2007, 19, 214. (16) Hiramatsu, H.; Osterloh, F. E. Chem. Mater. 2004, 16, 2509. (17) Xu, Z.; Hou, Y.; Sun, S. J. Am. Chem. Soc. 2007, 129, 8698. (18) Rodriguez-Sanchez, L.; Blanco, M. C.; Lopez-Quintela, M. A. J. Phys. Chem. B 2000, 104, 9683.
Docsity logo



Copyright © 2024 Ladybird Srl - Via Leonardo da Vinci 16, 10126, Torino, Italy - VAT 10816460017 - All rights reserved