Docsity
Docsity

Подготовься к экзаменам
Подготовься к экзаменам

Учись благодаря многочисленным ресурсам, которые есть на Docsity


Получи баллы для скачивания
Получи баллы для скачивания

Заработай баллы, помогая другим студентам, или приобретай их по тарифом Премиум


Руководства и советы
Руководства и советы

Анализ возможностей использования сорбентов при очистке сточных вод диплом 2010 по экологии , Дипломная из Экология и охрана окружающей среды

Анализ возможностей использования сорбентов при очистке сточных вод диплом 2010 по экологии

Вид: Дипломная

2016/2017

Загружен 11.04.2017

refbank16978
refbank16978 🇷🇺

4.5

(4)

11 документы

1 / 41

Toggle sidebar

Сопутствующие документы


Частичный предварительный просмотр текста

Скачай Анализ возможностей использования сорбентов при очистке сточных вод диплом 2010 по экологии и еще Дипломная в формате PDF Экология и охрана окружающей среды только на Docsity! Содержание Введение Глава 1. Литературный обзор 1.1 Полимерные нанокомпозиты на основе природных слоистых силикатов (слоистосиликатные нанокомпозиты) 1.2 Методы синтеза полимерных нанокомпозитов на основе слоистых силикатов 1.3 Структура полимерных нанокомпозитов на основе монтмориллонита 1.4 Свойства полимерных нанокомпозитов 1.5 Адсорбционные свойства глинистых минералов Глава 2.Методика эксперимента 2.1 Методы исследования. Оборудование и реактивы 2.1.1 Рентгенографический метод 2.1.2 Рентгенофлуоресцентный метод. Теоретические основы и практика применения Глава 3. Обсуждение результатов 3.1 Изучение сорбционных характеристик полимерно-глинистых сорбентов по отношению к ионам тяжёлых металлов в статическом режиме 3.1.1 Исследование сорбционных характеристик сорбентов по отношению к ионам W(VI) и Mo(VI) 3.1.2 Исследование сорбционных характеристик сорбентов по отношению к ионам свинца Выводы Список литературы Введение Наиболее сложным объектом очистки являются сточные воды с примесью тяжелых металлов. Большинство тяжелых металлов, поступающих в водоемы, отличаются канцерогенным, мутагенным и терратогенным действием. Современные технологии не обеспечивают эффективной очистки сточных вод от тяжелых металлов. Их содержание в жидких отходах в 10-20 раз превышает ПДК. После реагентной обработки, чаще всего применяемой на предприятиях, остаточное содержание металлов достигает 1-5 мг/л, при ПДК для большинства металлов 0,1 – 0,001 мг/л. Решение этой проблемы в значительной мере связано как с несовершенством существующей технологии, так и с неэффективностью применяемых способов очистки сточных вод промышленных предприятий. Требуются дополнительные меры по доочистки сточных вод как от органических, так и не органических компонентов, без которых практически невозможно создание оборотных циклов и замкнутых систем водоснабжения промышленных предприятий или сброса стоков без экологического ущерба. Выбор оптимального экологически безопасного технологического процесса очистки промышленных сточных вод — это сложная задача. Наиболее перспективным способом очистки сточных вод является сорбционная технология, широко применяемая в промышленно развитых странах. Для её реализации в нашей стране необходимы доступные, дешевые, легко регенерируемые или утилизируемые сорбенты, среди которых особое положение занимают сорбенты на основе глинистых минералов. Целью настоящей работы являлось исследование сорбционных характеристик новых сорбентов на основе природных минералов и полиэлектролитов по отношению к ионам тяжелых металлов и выявление возможности их использования для решения экологических проблем. Частичный положительный заряд, сформированный на каждом катионе внутри галереи, делает его гидрофильным. Монтмориллонит, например, обладает значительной энергией гидратации. Благодаря этому в галереях может удерживаться большое количество молекул воды, что в свою очередь позволяет нейтрализовать частичный заряд за счет ион-дипольного взаимодействия [7]. Гидрофильность алюмосиликатов является причиной их несовместимости с органической полимерной матрицей — это основная проблема, которую приходится преодолевать при создании полимерных нанокомпозитов. Модификация алюмосиликатов может быть осуществлена путем замещения неорганических катионов внутри прослоек органическими катионами. Замещение катионными поверхностно-активными веществами, такими, как объёмные аммоний- и фосфоний-ионы, увеличивает пространство между слоями, уменьшает поверхностную энергию глины и придает поверхности глины гидрофобный характер [8]. Рис.2. Схема, представляющая процесс катионообменной реакции между силикатом и алкиламмониевой солью В результате образуется органический/неорганический материал, называемый «интеркалированным гибридом», а метод получения, основанный на этом принципе, стал известен как ион-дипольный метод [9, 10]. Впервые в истории человечества «интеркалированный гибрид» на основе глины и мочевины был получен при производстве раннего китайского фарфора [11]. Ориентация органических катионов алкиламмония (N+R1) в межслоевом пространстве различных слоистых силикатов определяется силами, действующими на них со стороны заряженных слоев и соседних катоинов [12,13]. Для уточнения характера взаимодействия адсорбированных органических катионов с поверхностью слоистых силикатов активно использовали ИК-спектроскопию [12]. Например, ИК-спектр дециламмоний вермикулита в области 400-3400 см-1 помимо полос, свойственных чистому вермикулиту и соответствующих колебаниям дециламмония показал широкую полосу поглощения валентных колебаний NH3 в области 3000-3200 см-1, свидетельствующую об образовании этой группой водородных связей с атомами кислорода силикатной группы [14]. ИК- исследования, проведенные для октиламмонийвермикулита [14] показали, что полоса деформации колебаний группы N+H3 обнаруживает зависимость интенсивности от угла падения лучей, вызванную тем, что связь N-C в цепи катиона ориентирована перпендикулярно силикатным слоям. В образце, в котором помимо катиона были адсорбированы и нейтральные молекулы аминов, эта зависимость не проявлялась, из чего следует, что ориентация молекул не являлась строго упорядоченной. В целом расположение катионов сложной формы зависит от строения самого катиона [15]. Был проведен анализ рентгенограмм образцов вермикулита с катионами, имеющими сложную форму (образцы получали заменой в группе N+H3 атомов водорода на объемные группы CnH2n+1, CH2CH=CCl-CH3); анализ показал, что величина межплоскостного расстояния не зависела ни от количества, ни от длины углеводородной цепи катионов [15]. Вследствие стерических затруднений сила электростатического взаимодействия органического катиона с анионной силикатной структурой уменьшается. Поэтому энергетически более выгодным для катионов является плоское расположение на кислородсодержащей поверхности силикатного слоя [15]. Полученные таким образом модифицированные глины широко применяют в красителях, косметике и смазочных материалах, используемых при бурении скважин. Одно из самых ранних систематических исследований взаимодействия между алюмосиликатным слоистым минералом и макромолекулами относится к 1949 г., когда было описано поглощение ДНК монтмориллонитом (ММТ) [16]. Последний удерживался в галереях алифатическими цепями, иммобилизованными на силикатной поверхности. В 1960 г. Усков обнаружил, ПММА выше температуры стеклования взаимодействует с монтмориллонитом, модифицированным октадециламмонием [17]. В 1961 г. Blumstein [18] при полимеризации винилового мономера in situ получил полимер, внедренный в межслоевое пространство монтмориллонита. Двумя годами позже Greenland использовал систему поливиниловый спирт-монтмориллонит с целью доказательства того, что полимер может самостоятельно внедряться в межслоевое пространство из водного раствора [19]. В 1975 году Tanihara и Nakagawa получили аналогичный результат при интеркаляции полиакриламида и полиэтиленоксида из водного раствора [20]. Наряду с ионными органическими модификаторами глин могут быть использованы неионные модификаторы, которые связываются с поверхностью глины за счет водородных связей. В некоторых случаях органоглины, полученные с использованием неионных модификаторов оказываются более химически стабильными, чем органоглины, полученные с использованием катионных модификаторов (см. рис. 2) [21]. Как видно, наименьшая степень десорбции (рис.4.) наблюдается в случае неионного взаимодействия между поверхностью глины и органического модификатора. По всей видимости, водородные связи, образованные между этиленоксидной группой и поверхностью глины делают интеркаляция мономера полимеризация in situ Рис. 6. Схема получения нанокомпозитов in situ методом: - слоистый силикат; - мономер. При этом достигается интеркаляция частиц полимеров (интеркалированные системы), и только часть частиц слоистых силикатов расслаивается на единичные слои наноразмерной толщины. В результате улучшаются физико-механические характеристики, как, например, в случае полистирольных, полиэтиленоксидных, полипропиленовых композиций [29-31]. При получении этим методом полиолефиновых композитов наполнитель модифицируют малеиновым ангидридом [32] или проводят сополимеризацию олефина с полярным сомономером [33-36]. Модифицирование повышает совместимость полимера со слоистым силикатом. Другой метод получения нанонаполненных полимеров — прямой синтез материала путем интеркаляционной полимеризации, т.е. синтез матричного полимера непосредственно в межслоевом пространстве частиц силиката. При этом полимеризации подвергается мономер или олигомер. Метод позволяет получить действительно эксфолиированные системы с принципиальным изменением физических и механических свойств исходного полимера. Например, модуль упругости, прочность, теплостойкость, барьерные свойства композиций найлон-6 с монтмориллонитом увеличиваются в два раза по сравнению с исходным полимером [37, 38]. Интеркаляционный метод эффективен и при полимеризации полярных мономеров, в частности, для получения нанокомпозитов эмульсионной полимеризацией. Так, например, при достижении полного диспергирования натриевой формы монтмориллонита в воде были получены нанокомпозиты на основе полиметилметакрилата, полистирола, сополимера стирола и акрилонитрила [39-45], поливинилового спирта (ПВС) [46,47], полиэтиленоксида (ПЭО) [48-52], полиакриловой кислоты (ПАК) [48], поливинилпирролидона (ПВП) [53]. Другой подход к синтезу нанокомпозитов «полистирол— монтмориллонит» предложен в [54]: инициатор «живой» радикальной полимеризации закрепляли в межслоевом пространстве решетки силиката путем катионного обмена с ионами натрия, что позволило осуществить полимеризацию стирола непосредственно в межслоевом пространстве силиката с последующей эксфолиацией частиц этого наполнителя под действием образующегося полимера. Сообщается о применении метода интеркаляционной полимеризации для синтеза нанокомпозитов на основе полиэтилентерефталата [55-58], полиимида [165], а также термореактивных полимерных матриц. Так, в [59-62] изучали влияние типа слоистых силикатов и их модификаторов, отверждающих агентов и условий полимеризации на структуру и свойства нанокомпозитов на основе эпоксидных смол. 1.3 Структура полимерных нанокомпозитов на основе монтмориллонита В настоящее время в качестве основного способа исследования структуры нанокомпозитов используется метод РСА. Влияние интеркалированного полимера на упорядоченность структуры силиката отражается на изменении интенсивности и формы основных спектральных линий, а степень упорядоченности – на амплитудном диапазоне. Из этого можно сделать вывод о компланарности алюмосиликатных слоев в полученном гибриде. Так для монтмориллонита характерен пик в малоугловой области (2Ө = 6-8). Этот пик отвечает за упорядоченность в структуре силиката. Для ОМСС характерно смещение данного пика в сторону уменьшения значения 0 4E 82 . Для полимерных нанокомпозитов при хорошем распределении частиц глины по объёму полимерной матрицы, этот пик исчезает, что говорит об исчезновении характерной упорядоченности в структуре слоистого силиката. Если количество глины превышает некоторый предел распределения её в полимерной матрице, пик появляется вновь. Данная закономерность продемонстрирована на примере полиэтилентерефталата (ПЭТ) (рис.7) [63]. По значению угла 0 4E 82 определяют размер пакета алюмосиликата. Пакет состоит из слоя глины и межслоевого пространства. Его размер увеличивается в ряду от исходного силиката до полимерного нанокомпозита, за счет увеличения межслоевого пространства. В среднем, для монтмориллонита размер пакета равен 1,2-1,5 нм, а для ОМСС – 1,8-3,5 нм. Возможности РСА, однако, не позволяют получить информацию относительно пространственного распределения силиката в полимерной матрице и форме гибрида, так как все данные являются усредненными. Кроме того, некоторые слоистые силикаты не имеют ярко выраженных базовых пиков, что затрудняет определение интенсивности и формы пиков при сравнении исходного и интеркалированного силиката. Для более глубокого рассмотрения этой задачи используются атомно-силовая микроскопия (АСМ), сканирующая электронная микроскопия (СЭМ) и просвечивающая электронная микроскопия (ПЭМ) [64 – 66]. Дополнительную информацию об интеркалированном гибриде можно получить, используя метод ДСК [67]. Ограничение подвижности интеркалированных полимерных цепей отражается в изменении их вращательной и поступательной подвижности. Аналогичная ситуация наблюдается в сетчатых полимерах, где ограничения подвижности полимерных цепей приводят к увеличению температуры стеклования Тс. Недавно было предложено использование метода твердофазной спектроскопии ЯМР 13С для характеристики полученных нанокомпозитов. При этом данные ЯМР, объединенные с данными РСА и ДСК, способствовали определению структурных различий между гибридами [68, 69]. Для исследования фазового состава полимера в композитах используют также метод КР [70]. 1.4 Свойства полимерных нанокомпозитов стимулирует и, несомненно, оправдывает интерес исследователей к проблеме синтеза и механизма образования этого класса полимерных соединений. 1.5 Адсорбционные свойства глинистых минералов Для глин, особенно монтмориллонитовых, следует разграничивать внешнее адсорбционное пространство (внешняя поверхность, ограничивающая размер частицы) и внутреннее адсорбционное пространство (внутренняя поверхность между слоями частицы). При характеристике адсорбционной способности монтмориллонитовых глин целесообразно учитывать, что вещества в зависимости от химической природы могут адсорбироваться по различным механизмам. Так, углеводороды способны адсорбироваться главным образом во внешнем адсорбционном пространстве, а вода и ряд других полярных веществ адсорбируются как во внешнем, так и во внутреннем адсорбционном пространстве. Пористость монтмориллонитов обусловлена кристаллической структурой и ее дефектами и вторичной пористой структурой, причем микропоры в результате внутрислоевой адсорбции могут преобразовываться в переходные. Как известно, глины являются одним из важнейших видов минерального сырья, нашедшего широкое применение в строительной, керамической, бумажной, резиновой, пластмассовой, пищевой, нефтеперерабатывающей промышленности и др. Однако свойства природных глин часто приводят к ограничению их практического применения. В связи с этим заслуживают большого внимания исследования по модифицированию свойств глин, что является частью большой области работ, касающихся модифицирования свойств твердых тел. Важные исследования по влиянию химического модифицирования на адсорбционные свойства твердых тел проведены М. М. Дубининым, А. В. Киселевым, Ф. Д. Овчаренко, И. Е. Неймарком, В. Т. Быковым, Н. Н. Грязевым, 3. Г. Зульфугаровым, М. С. Мерабишвили и др. Известно, что адсорбционные свойства глин могут быть существенно изменены в результате химического модифицирования. Причем условно можно говорить о «мягком» и «жестком» химическом модифицировании. В первом случае в основном происходит модифицирование поверхности («внешней» и «внутренней»), а во втором – кроме природы поверхности значительно изменяется и пористость. К процессам мягкого модифицирования можно отнести модифицирование глин неорганическими и органическими катионами, силикоорганическими соединениями, азотсодержащими и другими веществами. Яркий пример жесткого модифицирования – обработка глин растворами сильных неорганических кислот. Этот процесс получил название «кислотной активации». Результаты ранних исследований по взаимодействию глин с органическими веществами приведены в известных монографиях Р. Е. Грима [83] и Ф. Д. Овчаренко [84], в обзоре Р. В. Михалюка [85], сборниках [86, 87] и других публикациях. Глины используют в качестве наполнителей для различных продуктов (резин, пластмасс и др.), загустителей смазок водных и неводных растворов для бурения и т. д. Применение глин делает необходимым гидрофобизацию частиц глины, так как очевидно, что чем выше у глинистой частицы сродство к органической среде, тем лучше она может совмещаться с органическими материалами. Модифицирование монтмориллонитовой глины может проявляться в изменении химической природы внешней и внутренней кремнекислородной поверхности частицы, вытеснении межслоевой воды и обмене катионов щелочных (щелочноземельных) металлов на органические или на другие неорганические катионы. При взаимодействии монтмориллонитов (бентонитов) с органическими веществами получаются органомонтмориллониты (органобентониты) или так называемые глинистые органокомплексы. Исследовательские работы в этом направлении были начаты еще в 30-х годах нашего столетия. В настоящее время в некоторых странах уже налажено промышленное получение органоглин. Работа по химическому модифицированию авторами работы [88] проводилась на приходных и активированных глинах. Асканского и Гумбрийского месторождений. Были применены методы ионного обмена и непосредственного взаимодействия между бентонитами и силикоорганическими и азотсодержащими органическими соединениями. Природный и активированный гумбрин обрабатывали подкисленным раствором фтористого аммония. Для выяснения влияния модифицирования на адсорбционные свойства была изучена адсорбция паров воды, бензола и н-гептана методом кварцевых микровесов [89]. Ниже приведены некоторые результаты экспериментальных исследований. Модифицирование методом ионного обмена было проведено 0,1 N растворами ряда неорганических солей [90]. На основании работ [91, 92] и в соответствии с ранее полученными результатами других исследователей [93] можно сделать заключение, что адсорбционная способность по парам воды, определяющая гидрофильность природных глин, существенно зависит от рода неорганических катионов. Таким образом, некоторая доля из общего количества молекул воды в процессе адсорбции связывается с катионами. Здесь наблюдается определенный адсорбционный ряд катионов. Причем введение двухвалентных катионов приводит к росту адсорбционной способности глин по парам воды. Для всех исследованных авторами [93] катионных форм монтмориллонитов на изотермах адсорбции наблюдается петля гистерезиса, распространяющаяся на всю область относительных давлений. На адсорбционный процесс влияет набухание адсорбента в результате межслоевого поглощения паров воды. Катионное модифицирование в определенной мере влияет и на адсорбционную способность по парам бензола (табл. 1). Таблица 1 Несколько увеличена адсорбционная способность модифицированной глины и по парам воды в области малых и средних давлений. Однако если относительное давление стремится к единице, адсорбция снижена. Как видно из рисунка 9, петля адсорбционного гистерезиса значительно сужена, и набухание ограничено. Рис. 9. Изотермы адсорбции паров воды при 20° С на природной асканглине (1) и глине, модифицированной 0,4%-ным раствором йодистого тетраметиламмония (2) Результаты авторов статьи [93] в основном хорошо согласуются со сравнительно недавно опубликованными данными Беррера и Бруммера [94], которые изучили адсорбционную способность уомингского бентонита (США), модифицированного растворами метиламмоний- и тетраметиламмонийгалогенидов. Было замечено повышение адсорбционной способности аминированных глин по парам гептана и бензола в области малых и средних давлений. В отношении паров воды адсорбционная способность повышена в области малых и средних давлений и существенно понижена при дальнейшем росте относительного давления. В результате протекания ионообменной реакции катионы аммонийных оснований «раскрывают» межслоевое пространство (которое является внутренним адсорбционным пространством) и делают его доступным для молекул углеводородов. В результате наблюдается повышение адсорбционной способности по углеводородам от малого до среднего относительного давления. Сильное набухание адсорбента исключено, так как слои как бы скреплены, и межслоевое пространство ограничено. Повышение адсорбционной способности по парам воды, по-видимому, является результатом увеличения адсорбционного потенциала (адсорбционного сродства) по отношению к молекулам воды. Своеобразная картина влияния модифицирования на адсорбционные свойства наблюдается в случае непосредственного взаимодействия с глинами силикоорганических и азотсодержащих органических соединений. Для примера приведем данные по модифицированию глин некоторыми хлорсиланами. Модифицирование проводилось путем соприкосновения порошкообразной высушенной глины с парами кремнийорганических соединений при 20°С в течение 10 суток. После этого образцы глин промывали дистиллированной водой до удаления ионов хлора и сушили [95]. У природной асканглины, модифицированной силикоорганическими соединениями, повысилось адсорбционное сродство в области низких и средних давлений по парам бензола, н-гептана и азота. Полный объем адсорбционного пространства практически не изменился (табл. 2). Несколько иная картина наблюдалась при исследовании адсорбции паров воды. Пары воды адсорбируются на модифицированной природной асканглине лучше, чем на природной глине в области малых и средних давлений. Полный объем адсорбционного пространства для модифицированных глин значительно снижен (см. табл. 2). По-видимому, ограничен процесс набухания, т. е. сильного (интенсивного) внедрения молекул воды в межслоевое пространство. Такое поведение модифицированной глины может быть обусловлено своеобразным скреплением (сшиванием) алюмосиликатных слоев, препятствующим после определенного заполнения адсорбционного пространства увеличению параметра решетки с. Изотермы адсорбции паров азота (при -196° С) на модифицированных образцах природной асканглины приведены на рис. 10. Рис. 11. Изотермы адсорбции паров бензола при 20° С на асканглинах: 1 – природная асканглина; глины, модифицированные алкиламинами: 2 – 2% (C2H5)NH2; 3 – 2% (C2H6)NH2Cl; 4 — 2%(C2H5)N Рис. 12. Изотермы адсорбции паров воды на природной асканглине (1) и асканглине, модифицированной 10%-ным (2) и 20%-ным (5) растворами октадециламиноацетата Степень гидрофобизации в этом случае меньше, чем при использовании органических гидрофобизаторов. Из приведенного выше материала ясно видно, что химическим модифицированием удается значительно гидрофобизировать природные пористые и высокодисперсные тела, а также увеличить их адсорбционные свойства. Глава 2. Методика эксперимента 2.1 Методы исследования. Оборудование и реактивы 2.1.1 Рентгенографический метод Под рентгенографическим анализом понимается совокупность разнообразных методов исследования, в которых используется рентгеновское излучение – поперечные электромагнитные колебания с длиной волны 102 - 102Å. В методе используется монохроматическое рентгеновское излучение, обычно линии К-серии (возникающие при переходе электронов в атомах с L- оболочки на К-оболочку) металлов от хрома (обозначается CrK) до молибдена (MoK), длины волн которых лежат в интервале от 2,3 до 0,7 Å. Применение рентгеновского излучения для исследования кристаллических веществ основано на том, что его длина волны сопоставима с расстоянием между упорядоченно расположенными атомами в решетке кристаллов, которая для него является естественно дифракционной решеткой. Сущность рентгеновских методов анализа как раз и заключается в излучении дифракционной картины получаемой при отражении рентгеновских лучей атомными плоскостями в структуре кристаллов. В основе рентгенографического анализа лежит уравнение Вульфа– Брэгга, связывающее угол падения или отражения на атомную плоскость рентгеновского луча с его длиной волны и величиной межплоскостных расстояний d: n = 2d sin, где n – целое число (1, 2, 3…), называется порядком спектра или порядком отражения. При дифрактометрической съемке угол вычисляют по реперным отметкам, проставляемым автоматически на диаграммной ленте при съемке рентгенограммы через определенное число градусов (1; 0, 5;…). По найденным значениям и известной длине волны применяемого рентгеновского излучения определяют величины межплоскостного расстояния d, используя уравнение Вульфа-Брегга (величина n – порядок отражения - принимается в этом случае равной 1). Оценка относительной интенсивности дифракционных максимумов при фотографической регистрации проводится по степени почернения пленки. Дифракционный максимум при регистрации на дифрактометре оценивается по высоте данного типа от точки его максимума до линии фона. Существует несколько шкал относительной интенсивности. При использовании качественной шкалы самый сильный пик оценивается как о.с. (очень сильный) или о.о.с. (очень сильный), а остальные пики как ср. (средний), сл. (слабый), о.сл. (очень слабый) и т.д. При использовании количественной шкалы наиболее интенсивному пику присваивается максимальный балл 10 (десятибалльная шкала) или 100 (стобалльная шкала), а интенсивности остальных пиков выражаются меньшими числами в зависимости от отношения их высоты к высоте максимального пика. В рамках рентгенографического метода существует рентгенофазовый анализ, который в зависимости от решаемых задач подразделяют на качественный и количественный. Задача качественного рентгенофазового анализа – идентификация природы кристаллических фаз, содержащихся в исследуемом материале. Анализ основан на том, что каждое индивидуальное кристаллическое соединение дает специфическую рентгенограмму с определенным набором линий (дифракционных максимумов) и их интенсивностью. В настоящее время имеются рентгенографические данные о большом числе известных кристаллических соединений, эталонные рентгенограммы которых приводятся в справочной литературе или отдельных публикациях. Сущность качественного рентгенофазового анализа сводится к сопоставлению экспериментально определенных значений межплоскостных расстояний (d, ) и относительных интенсивностей (I) линий в эталонными Длина волны испускаемого фотона связана с энергией формулой E = E1-E2 = hc/l , где E1 и E2 – энергии орбиталей, между которыми произошел переход электрона, h – постоянная Планка, с - скорость света, l - длина волны испускаемого(вторичного) фотона. Таким образом, длина волны флуоресценции является индивидуальной характеристикой каждого элемента и называется характеристической флуоресценцией. В то же время интенсивность (число фотонов, поступающих за единицу времени) пропорциональна концентрации (количеству атомов) соответствующего элемента. Это дает возможность элементного анализа вещества: определение количества атомов каждого элемента, входящего в состав образца. Управление анализом и вычисление концентраций Анализ и обработка результатов измерений проводится в автоматическом режиме. Для этого разработаны методики анализа многих элементов для различных типов веществ. Методики реализованы в виде компьютерных программ. Во время измерения компьютер управляет всеми узлами спектрометра в соответствии с заданной программой анализа. Современный уровень надежности оборудования и устройство автоматической подачи образцов позволяют выполнять анализ непрерывно круглосуточно без участия оператора. По окончании измерений компьютер выполняет расчет концентраций. Результаты анализа передаются электронными средствами связи автоматически по указанным адресам, либо накапливаются в базе данных измерений для дальнейшей обработки. Для количественного определения концентрации металлов были построены калибровочные кривые на W, Mo, Pb. Глава 3. Обсуждение результатов 3.1 Изучение сорбционных характеристик полимерно-глинистых сорбентов по отношению к ионам тяжелых металлов в статическом режиме Изучение сорбционной способности в статических условиях проводили с использованием модельных водных растворов солей металлов свинца, молибдена, вольфрама с концентрацией 1 г/л. Загрузку сорбентов брали из расчета 100 мл модельного раствора на 0,5 г композита. В качестве объектов исследований были выбран композит состава монтмориллонит с метакрилатом гуанидина (ММТ/МАГ) 50:50. Исследования проводили при комнатной температуре. Измерения массовой концентрации металлов в пробах воды до и после обработки композитами проводили рентгенофлюресцентным анализом на автоматизированном дифрактометре ДРОН-6 в центре коллективного пользования КБГУ «Рентгеновская диагностика материалов». 3.1.1 Исследование сорбционных характеристик сорбентов по отношению к ионам W(VI) и Mo(VI) В связи с тем, что в Кабардино-Балкарии имеется комбинат по добыче вольфрамомолибденовой руды и завод по гидрометаллургической переработке вольфрамомолибденового сырья более подробно изучена сорбционная способность композитов по отношению к ионам шестивалентного вольфрама и молибдена. Извлечение ионов W(VI) и Mo(VI) из водного раствора композитами оценивалось следующими параметрами: концентрацией ионов в исходном растворе и в очищенной водной фазе, мг/л; степенью извлечения металла, %. Выводы Впервые изучены сорбционные характеристики композиционных материалов на основе монтмориллонита и метакрилата гуанидина Показано, что композиты на основе глинистых минералов и полиэлектролитов обладают высокими сорбционными характеристиками по отношению к изученным металлам. Установлено, что степень извлечения ионов вольфрама, молибдена и свинца композитами достигает 50-70% в слабокислой и нейтральной среде. Выявлена возможность использования новых полимерно-глинистых композитов для концентрирования металлов из разбавленных растворов. Литература 1. Помогайло А.Д. // Высокомолек. соед. 2006, Т.48. №7, С. 1318 2. Polymer-Clay-Nanocomposites/Ed. By Pinnavaia T.J., Beall G. New York: Wiley, 2000. 3. Polymer Nanocomposites: Synthesis, Characterization, and Modelong. ACS Symp. Ser. 804/ Ed. By Krishnamoorti R., Vaia R.A. Washington. DC.: Am. Chem. Soc., 2001. 4. Грим P. E. Минералогия глин. М., Изд-во иностранной литературы, 5. 1959. 6. Kryszewski M. Nanointercalates - novel class of materials with promising properties// Synthetic Metals. - 2000. - V. 109. - P. 47-54. 7. Pinnavia T.J.//Science. 1983. V.220. P.365. 8. Lagaly G., Pinnavaia T.J.// Appl. Clay Sci. 1999. V.15. P.312. 9. Blumstein R., Parikh K.K., Malhotra S.L.//J. Polym.Sci. 1971. V.9. P.1681. 10.Beall G.W., Tsipursky S.J.// Chemistry and Technology of Polymer Additives/ Ed. By Al-Malaika S., Golovoy A., Wilkie C.A. Oxford: Blackwell Science Ltd., 1999. Ch.15. 11.Weiss A.//Angew. Chem. Int. Ed. 1963. B.2. S.697. 12.Шаркина Э.В. Строение и свойства органоминеральных соединений. Киев: Наукова думка, 1976. 13.Shi H., Lan T., Pinnavaia T.J.//Chem.Mater. 1996. V.8. P.1584. 14.Segermann E.//J.Am. Chem. Soc. 1970. V.68.P.1946. 15.Greenland D.J., Laby R.H., Quirk I.P.//Trans. Faraday Soc. 1965. V.61. P.2031. 16.Bower C.A.// Iowa Agricultural Experiment Station Research Bull. 1949. V.362. P.39. 17.Усков И.А. //Высокомолек. соед. 1960. Т.2. №6. С.926. 18.Blumstein A. // Bull. Chem. Soc. 1961. P. 889 19.Greenland D.J. //J. Coll. Sci. 1963. V. 18. P. 647. 20.Tanihara K., Nakagama M.//Nippon Kagaku Kaishi. 1975. V.5. P. 782. 21.Y.H. Shen. Chemosphere, 2001. Ch. 44. P.989-995 22.Okada A., Fukoshima Y., Inagaki S., Usuki A., Sugiama S., Kurashi T., Kamigaito O. Pat. 4739007 USA. 1988. 23.Zilg C., Dietsche F., Hoffman B., Dietrich C., Mulhaupt R.//Proc. Eur. Conf. “Eurofiller 99”. Villeurbanne, France, 1999. P. 110. 24.Zilg C., Reichert P., Dietsche F., Engelhardt T., Mulhaupt R.// Kunstoffe.1998. V.88. P.1812. 25.Giannelis E.P.//Adv. Mater.1996. V.8. P.29. 26.Lagaly G., Pinnavaia T.J.// Appl. Clay Sci. 1999. V.15. P.312. 27.Frisch H.L., Mark J.E.//Chem. Mater.1996. V.8. P.1736. 28.Gilman J.W., Kashiwagi T., Nyden M.R., Brown J.E.T., Jackson C.L., Lomakin S.M., Giannelis E.P., Manias E.// Chemistry and Technology of Polymer Additives/Ed. By Ak-Malaika S., Golovoy A., Wilkie C.A. Malden, MA: Blackwell Sci. Inc.1999. Ch.14. P. 249. 29.Sikka M., Cerini L.N., е.а. J. Polym. Sci. B, 1996, v. 34, p. 1443. 30.Manias E., Touny A., Wu L., Strawhecker K., Lu B., Chung T.C. /Chem. Mater. 2001. V. 13. P. 3516. 31.Kawasumi M., Hasegawa N., Kato M., Usuki A., Okada A. /Macromoleculs, 1997. V. 30. P. 6333. 32.Vaia R.A., Sauer B.B., Tse O.K., Giannelis E.P. /J. Polym. Sci. B. 1997. V. 35. P. 59. 33.Tjong S.C., Meng Y., Hay A.S. /Chem. Mater.2002. V.14. P.44. 34.Wang K.H., Chung I.J., е.а. Macromoleculs 2002. V. 35. P. 5529. 35.Kojima Y.., Usuki A., Kawasumi M., Okada A., Kurauchi T., Kamigaito O./ J. Polym. Sci. A. 1993. V. 31. P. 1755. 36.Kojima Y., Usuki A., Kawasumi M., Okada A., Kurauchi T., Kamigaito O. / J. Appl. Polym. Sci. 1993. V. 49. P. 1259. 37.Lee D.C., Jang L.W. J. Appl. Polym. Sci., 1996, v. 61, p. 1117. 38.Noh H., Lee D.C. Ibid., 1999, v. 74, p. 2811. 39.Bandyopadhyay S., Giannelis E.P. Polym. Mater. Sci. Eng., 2000, v. 82, p. 208. 79.Yano К., Usuki A., Okada A., Synthesis and properties of polyimide-clay hybrid films, J. Polym. Sci., A: Polym. Chem., v. 35, 1997, p, 2289-2294. 80.Tortora M., Gorrasia G., Vittoriaa V., Gallib G., Ritrovatib S., Chiellinib E., Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites. Polymer, v. 43,2002, p. 6147-6157. 81.Микитаев А.К., Каладжян А.А., Леднев О.Б., Микитаев М.А., Давыдов Э.М.. Нанокомпозитные полимерные материалы на основе органоглин с повышенной огнестойкостью // Пластич.массы. – 2005. – №4. – C. 26-31. 82.Ломакин С.М., Заиков Г.Е. Высокомолек. Соед. Б.2005.-Т47.№1- С.104-120. 83.Евсикова О.В., Стародубцев С.Г., Хохлов А.Р. Синтез, набухание и адсорбционные свойства композитов на основе полиакриламидного геля и бентонита натрия. Высокомолек. Соед. Сер.А.2002. Т.44.№5 с.802-808. 84.Ф. Д. Овчаренко. Гидрофильность глин и глинистых минералов. Киев, изд-во АН УССР, 1961. 85.Г. В. Цицишвили, М. С. Шуакришвили, Д. Н. Барнабишвили. Адсорбнционные свойства химически модифицированных глин. В кн. В.Т. Быкова «Природные сорбенты». М.: Наука, 1967. с. 45-55. 86.Р. В. Михалюк. Сб. «Бентонитовые глины Украины», ч. 2. Киев, Изд-во АН УССР, 1958, стр. 205. 87.Сб. «Рентгеновские методы определения и кристаллическое строение минералов глин». М., ИЛ, 1955. 88.Сб. «Рентгеновские методы изучения и структура глинистых минералов». М., изд-во «Мир», 1965, стр. 189. 89.Г. В. Цицишвили, Д. Н. Барнабишвили. ДАН СССР, 92, 633 (1953). 90.М. С. Шуакришвили, Г. В. Цицишвили. Труды Ин-та физической и органической химии им. П. Г. Меликишвили, 17, 25 (1963). 91.R. М. Ваrrer, К. Вrummеr. Trans. Faraday Soc, 59, 959 (1963). 92.Г. В. Цицишвили, М. С. Шуакришвили. Поверхностные явления на алюмосиликатах. Тбилиси, изд-во «Мецниереба», 1965. 93.Д. Н. Барнабишвили, Г. В. Цицишвили, К. А. Бежашвили. Труды Ин-та физической и органической химии АН ГрузССР, 17, 37 (1968). 94.Сб. «Бентонитовые глины Грузинской ССР». Под ред. проф. А. А. Твалчрелидзе. Тбилиси, 1970. 95.Грунтоведение / Под ред. Е.М.Сергеева. М.: Изд-во МГУ, 1983.389 с.
Docsity logo