Docsity
Docsity

Подготовься к экзаменам
Подготовься к экзаменам

Учись благодаря многочисленным ресурсам, которые есть на Docsity


Получи баллы для скачивания
Получи баллы для скачивания

Заработай баллы, помогая другим студентам, или приобретай их по тарифом Премиум


Руководства и советы
Руководства и советы

Обзор технического обеспечения компьютера реферат по информатике , Сочинения из Информатика

Обзор технического обеспечения компьютера реферат по информатике

Вид: Сочинения

2016/2017

Загружен 11.04.2017

refbank13247
refbank13247 🇷🇺

5

(1)

10 документы

1 / 25

Toggle sidebar

Сопутствующие документы


Частичный предварительный просмотр текста

Скачай Обзор технического обеспечения компьютера реферат по информатике и еще Сочинения в формате PDF Информатика только на Docsity! Кыргызский Государственный Национальный Университет Институт Интеграции Международных Образовательных Программ Кыргызско-Американский факультет компьютерных технологий и Интернет КУРСОВАЯ РАБОТА по дисциплине "Информатика" на тему "Обзор технического обеспечения компьютера " Выполнил: Бакалов Федор гр. ЭСБ-4-98 Проверил: Бишкек 1999 Содержание Содержание 2 Введение 4 Системный блок 4 Корпус РС 4 Типы корпуса 4 Блок питания 6 Материнская плата 6 Размеры материнской платы 7 Процессор 7 Тактовая частота 7 Сопроцессор 8 Память 8 Оперативная память 8 Кэш-память 9 BIOS (постоянная память) 9 CMOS (полупостоянная память) 10 Видеопамять 10 Контроллеры и шины. 10 Зачем нужны контролеры и шины 10 Виды шин 10 Контролеры портов ввода-вывода 11 Замечание: 11 Носители информации 11 Дисководы для дискет. 11 Дисководы для компакт-дисков и CD-рекодеры. 12 Жесткие диски. 14 Стримеры 15 Мониторы и видеоконтроллеры. 16 Видеоконтроллеры 16 Цифровые мониторы TTL 17 Монохромные мониторы 17 Цифровые мониторы RGB(red, green, blue) 17 Аналоговые мониторы. 18 Мультичастотные мониторы. 18 Жидкокристаллические дисплеи LCD (Liquid Crystal Display) 18 Газо-плазменные мониторы 18 Характеристики мониторов 18 Модемы и факс-модемы. 19 Корпус типа DESKTOP Тип корпуса Desktop (письменный стол), объединяет группу до недавнего времени наиболее часто применяемых корпусов. Самым большим недостатком этих корпусов является то обстоятельство, что они занимают много места на письменном столе, при этом установка монитора на корпусе РС затрудняет его использование и не отвечает существующим энергонормическим стандартам. Габариты таких корпусов составляют, как правило, в ширину 45 см, в высоту около 20 см. Корпус Desktop предназначен для размещения в нем блока питания от 150 до 250 Вт, такой мощности хватает для всех элементов РС. Desktop имеет достаточно пространства для монтажа всех компонентов, которые обычно требуются пользователю. Корпус типа TOWER Корпуса типа Desktop являлись стандартными, пока не выяснилось, что многие пользователи не хотят загромождать свое рабочее место. Этому способствовало то обстоятельство, что по мере совершенствования и развития РС необходимость доступа к их конструктивным элементам стала возникать достаточно редко. Накопление данных происходит на диске. Доступ к дисководу осущ6ествляется только при передаче данных или изготовлении страховочных копий. Впрочем, имеются еще два элемента, которые должны быть расположены на панели управления корпуса РС. Это кнопка включения (отключения) питания и кнопка сброса системы Reset. Учитывая вышеизложенное, появилась возможность размещать корпус новой конструкции под рабочим столом. Корпус типа MINI-TOWER Корпус типа Mini-Tower можно сравнить с корпусом типа Desktop, установленном на бок. Габариты Mini-Tower идентичны габаритам корпуса Desktop. В большинстве случаев Mini-Tower имеет два съемных блока для 5,25 FDD, два съемный блока для 3,5 FDD и скрытый блок для винчестера. Корпус типа Mini-Tower не имеет большого преимущества перед корпусом Desktop. Обычно корпус Tower располагается рядом со столом, благодаря чему освобождается рабочее пространство. Корпус типа MIDI-TOWER Корпус типа Midi-Tower несколько больше Mini-Tower и составляет высоту около 50 см. У Midi-Tower вместо двух блоков для привода размером 5,25 имеется три блока, а в основном конструктивные возможности сходны с возможностями корпуса Mini-Tower. Корпус типа BIG-TOWER Корпус Big-Tower является наиболее оптимальной конструкцией, если достаточно место рядом с рабочим столом или под ним. Корпус Big-Tower обладает большими возможностями в соответствии со своим именем. Обычно он оборудован 6 отсеками для установки приводов размером 5,25, а иногда еще 2 отсеками размером 3,5. Габариты Big-Tower составляют по ширине около 48 см, в высоту 63 см и в длину 20 см. Корпус типа FileServer Под FileServer понимается главная вычислительная машина в сети, которая в соответствии со своим оснащением, мощностью и конфигурацией должна снабжать данными и координировать работу множества рабочих станций. Корпус FileServer является самым дорогим корпусом. Габариты составляют 73 см в высоту, 30-35 см в ширину и около 55 см в длину. В корпусе FileServer с точки зрения полезной площади можно было бы разместить три вычислительных машины обычной конфигурации. Корпус снабжен колесиками, которые позволяют без особых усилий передвигать компьютер. Блок питания Основная задача блока питания - это преобразование напряжения сети 220-240В, в напряжения питания конструктивных элементов компьютера: 12. В и 5В. Раньше для этих задач применялись силовые трансформаторы. Основное преимущество современных блоков питания перед трансформаторами состоит в весе. Трансформатор соответствующей мощности весит около 5 кг, в то время как вес современных импульсных блоков питания составляет всего около 900 грамм. Недостатком импульсного блока питания по сравнению с блоками питания на основе силовых трансформаторов состоит в небольшом сроке их службы. Каждому пользователю не помешает иметь представление о функционировании блока питания. Речь идет о коробке, в которой помещен вентилятор для обеспечения необходимого температурного режима электронных компонентов РС. Из-за пыли, со временем накапливающейся в блоке питания, вентиляция становится менее эффективной. Чем выше температура, тем короче срок службы элемента. Нередко при эксплуатации в сильно запыленном помещении блок питания полностью приходит в негодность из-за повышения температуры его элементов. В таких случаях следует использовать более дорогой корпус, на передней панели которого имеются специальные вентиляционные отверстия со специальными фильтрами. Материнская плата Материнская плата является основной частью каждого РС. Это не только "сердце компьютера" но и самостоятельный элемент, который управляет внутренними связям и взаимодействует через прерывание с другими внешними устройствами. В этом отношении материнская плата является элементом внутри РС, влияющим на общую производительность компьютера. Супербыстрый винчестер или гиперпроизводительная графическая карта нисколько не смогут увеличить его производительность, если тормозится поток данных от и к материнской плате. На основной плате компьютера – системной или материнской плате, обычно располагаются основной микропроцессор, оперативная память, кэш- память, шины и BIOS. Кроме того, там находятся электронные схемы (контролеры), управляющие некоторыми устройствами компьютера. Так, контролер клавиатуры всегда находится на материнской плате. Часто там же находятся и контролеры для других устройств (жестких дисков, дисководов для дискет и т. д.). Такие контролеры называются встроенными или интегрированными в материнскую плату. На современных материнских платах обычно находятся интегрированные контролеры дискет, портов ввода-вывода, часто контролеры жестких дисков, иногда видеоконтроллер. Материнскую плату (Motherboard) также называют главной (Mainboard) ил системной платой. Размеры материнской платы Размеры материнской платы нормированы. Также стандартизированы и отверстия внутри платы, которые соединяют ее с дном корпуса. Материнская плата обычно крепится двумя болтами, остающиеся отверстия предусмотрены для специальных стоек, которые фиксируют материнскую плату в корпусе. Характерные размеры материнской платы. Обозначения величины Размер (см) Замечания Fullsize 35,6 на 30,5 Устаревший Babysize 22,5 на 33 Стандартный размер Halfsize (2/3 Babysize) 21,8 на 24,4 Мини плата для РС с CPU 386 и 486,она пригодна для корпуса Slimline Процессор Самым главным элементом в компьютере является микропроцессор – небольшая (в несколько сантиметров) электронная схема. Эта схема выполняет все вычисления и обработку информации. Микропроцессор умеет выполнять сотни миллионов операций в секунду. В компьютерах типа IBM PC используются микропроцессоры фирмы INTEL, а также совместимые с ними микропроцессоры других фирм. Микропроцессоры фирмы Intel таковы: Intel-8086, 80286, 80386 (Модификации SX и DX), 80486 (модификации SX, SX2, DX, DX2, DX4), Pentium, Pentium Pro и Pentium 2, они приведены в порядке возрастания производительности и цены. Разница производительности этих процессоров очень велика. Так новейший микропроцессор Pentium Pro быстрее процессора Intel 8086 в несколько тысяч раз! Тактовая частота Одинаковые модели микропроцессоров могут иметь разную тактовую частоту, чем выше тактовая частота, тем выше производительность и цена микропроцессора. Тактовая частота измеряется в мегагерцах (МГц). Например, микропроцессоры Intel Pentium выпускаются с тактовой частотой от 75 до 200 МГц. Часто тактовая частота указывается вслед за моделью микропроцессора, например PENTIUM/75МГц. Тактовая частота указывает скорость выполнения элементарных операций внутри микропроцессора. Разные модели микропроцессора выполняют одни и те же команды (например, сложение или умножение) за разное число тактов. Чем современнее модель микропроцессора, тем меньше тактов требуется микропроцессору для выполнения одних и тех же команд. Сопроцессор В тех случаях, когда на компьютере приходиться выполнять много математических вычислений (например, в инженерных расчетах, обработке трехмерных изображений и т. д.) желательно, чтобы математические операции над вещественными числами поддерживались аппаратно, то есть самим микропроцессором. Но микропроцессоры Intel 8086, 80286, 80386 и 80486 не обеспечивают такую поддержку, поэтому к ним для этого требуется добавить Контроллеры и шины. Зачем нужны контролеры и шины Чтобы компьютер мог работать, необходимо, чтобы в его оперативной памяти, находилась программа и данные. А попадают они туда из различных устройств компьютера – клавиатуры, дисководов и т. д. Иногда по традиции эти устройства называют внешними, хотя некоторые из них могут находиться внутри системного блока. Результаты выполнения программ также выводятся на различные устройства – монитор, принтер, диски и т. д. Обмен информацией между оперативной памятью и устройствами (они называются устройствами ввода-вывода) не происходит непосредственно: между любым устройством и оперативной памятью имеется два промежуточных звена: 1. Для каждого устройства в компьютере имеется электронная схема, которая им управляет. Эта схема называется контролером, или адаптером. Некоторые контролеры (например, контролер дисков) могут управлять сразу несколькими устройствами. 2. Все контролеры (адаптеры) взаимодействуют с микропроцессором и оперативной памятью через системную магистраль передачи данных, которую в просторечии называют шиной. Виды шин Подобно тому, как в городе может быть больше одной улицы, так и на материнской плате может быть не одна магистраль передачи данных. Обычно в современных компьютерах имеются две, а иногда и три разных типов шин. Это связано с тем, что разработанная для IBM PC AT в начале 80-х годов шина ISA оказалась слишком медленной и не смогла пропускать без существенных задержек объемы информации. Высокоскоростных устройств, появившихся в середине 80-х годов – жестких быстродействующих дисков, видеоконтроллеров и т. д. Поэтому сейчас шина ISA обычно используется лишь для подключения низкоскоростных устройств (контролеров портов ввода-вывода, звуковых карт и т. д.). А для подключения высокоскоростных устройств были разработаны более высокоскоростные шины – сначала MCA и EISA, потом VESA, и затем PCI. Сейчас большинство выпускаемых компьютеров оснащаются шинами PCI и ISA. Контролеры портов ввода-вывода Одним из контролеров, которые присутствуют почти в каждом компьютере, является контролер портов ввода-вывода. Часто этот контролер интегрирован в материнскую плату. Контролер портов ввода-вывода соединяется кабелями с разъемами на задней стенке компьютера, через которые к компьютеру подключается принтер, мышь и некоторые другие устройства. Порты ввода-вывода бывают следующих типов: Параллельные (обозначаемые LTP1-LTP4), к соответствующим разъемам на задней стенке компьютера (имеющим 25 гнезд см. рисунок), обыкновенно подключаются принтеры. Последовательные (обозначаемые COM1-COM3). К соответствующим разъемам на задней стенке компьютера (имеющим 9 или 25 штырьков), обычно присоединяют мышь, модем и другие устройства. Игровой порт – к его разъему (имеющему 15 гнезд, см. рисунок) подключается джойстик. Игровой порт имеется не у всех компьютеров. Как правило, контролер портов компьютера поддерживает один параллельный и два последовательных порта. Замечание: 1. Параллельные порты выполняют ввод и вывод с большой скоростью, чем последовательные (за счет использования большего количества проводов в кабеле). 2. Некоторые устройства (скажем, отдельные высокоскоростные модемы) могут подключаться и к параллельным и к последовательным портам. 3. Иногда через параллельные и последовательные порты по специальному кабелю осуществляется обмен информации между двумя компьютерами. Носители информации Дисководы для дискет. Гибкие диски (дискеты) позволяют переносить документы и программы с одного компьютера на другой, а также хранить информацию, не используемую постоянно на компьютере. Практически все компьютеры имеют хотя бы один дисковод для дискет. Однако как носитель информации дискеты используются все меньше, поскольку они недостаточно надежны и имеют малую по современным меркам емкость. Наиболее распространены дискеты размером 3,5 и 5,25 дюйма (89 и133 мм). Часто дискеты размером 5,25 называют пятидюймовыми, а размером 3,5- трехдюймовыми. Трехдюймовые дискеты предпочтительней, поскольку они обеспечивают более надежно, чем пятидюймовые дискеты, хранение информации. Дискеты различаются друг от друга по своей емкости, то есть по количеству информации, которое на них можно записать. Трехдюймовые дискеты чаще всего имеют емкость 1,44 Мбайта, хотя встречаются старые –емкостью 720 Кбайт. Пяти дюймовые дискеты чаще всего имеют емкость 360 Кбайт (обозначение – Double Side/Double Density, DS/DD) или 1,2 Мбайта (обозначение Double Side/High Density, DS/HD). Дискеты емкостью 360 Мбайт используются очень редко. Они считаются устаревшими. Пятидюймовые дискеты емкостью 1,2 Мбайта имеют специальное магнитное покрытие, которое позволяет записывать на них более узкую дорожку информации. Это магнитное покрытие труднее размагнитить и намагнитить, чем обычное и поэтому такие дискеты не могут использоваться в дисководах для дискет, емкостью 360 Мбайт. Различить эти два типа дискет можно по тому, что на дискетах емкостью 360 Кбайт вокруг внутреннего отверстия обычно имеется темное кольцо, а у дискет емкостью 1,2Мбайт – нет. Емкость трехдюймовых дискет определить просто, дискеты емкостью 1,44 Мбайта имеют специальную прорезь (см. рис 3.6), а на дискетах емкостью 720 Кбайт ее нет. На дискетах размером 5,25 дюйма имеется прорезь для защиты от записи. Если эту прорезь заклеить, то на дискету нельзя будет произвести запись. На дискетах размером 3,5 дюйма вместо прорези защиты от записи имеется специальный переключатель-защелка, разрешающая или запрещающая запись на дискету. Здесь, однако, запись на дискету разрешена, если отверстие, закрываемое защелкой, закрыто, и запрещена, если это отверстие открыто. Типы дисководов Дисководы для пятидюймовых и трехдюймовых дискет отличаются друг от друга по внешнему виду. Наиболее распространены трехдюймовые дисководы, поддерживающие дискеты емкостью 1,44 Мбайта, и пятидюймовые дисководы, поддерживающие дискеты емкостью 1,2 Мбайта. На многих современных компьютерах устанавливается только один трехдюймовый дисковод, так как пятидюймовые дисководы считаются устаревшими. Дисководы для компакт-дисков и CD-рекодеры. С помощью дисководов для компакт-дисков компьютеры могут считывать специальные компьютерные компакт-диски, а также проигрывать аудио компакт-диски. Компьютерные компакт-диски используются для распространения комплексов программ, данных большого объема, например каталогов, перечней, энциклопедий и т. д. Особенно удобны компакт-диски для распространения мультимедиа-приложений (программ, сочетающих движущиеся изображения, текст и звук), обучающих, демонстрационных и игровых программ. Внешне компьютерные компакт-диски не отличаются от аудио компакт-дисков (разве лишь нанесенных на них надписями). Диаметр компакт-диска составляет 12 см, верхняя сторона у них используется как этикетка, а нижняя (из белого металла, точнее, алюминия)- содержит информацию. Часто компакт-диски называют CD-ROM (Compact Disk-Read Only Memory). Компьютерный компакт-диск может содержать до 650 Мбайт информации, то есть столько же, сколько 450 дискет емкостью 1,44 Мбайта. При этом чтение компакт-дисков выполняется в десятки раз быстрее, чтение дискет, а как носители информации компакт-диски гораздо надежнее дискет. Компакт-диски можно использовать только для чтения содержащейся на них информации. Запись данных на компакт-диски осуществляется при их изготовлении посредством выдавливания процессором углублений на подложке компакт-диска, так что эти участки перестают отражать свет. В дисководах для компакт-дисков нанесенная информация считывается лучом лазера. Для защиты информации от повреждений на подложку наносится прозрачное покрытие. Вместе с обычными компакт-дисками есть также диски с подложкой золотого цвета. Это так называемые CD-R диски, в них подложка действительно содержит золото. Информация на них наносится лучом лазера на специальных приводах - CD-рекордерах, а считываться они могут как обычные компакт- диски, на дисководах для компакт-дисков. CD-R диски допускают лишь однократную запись информации стереть или исправить записанные на CD-R диск данные невозможно. Быстродействие дисковода определяется скоростью чтения данных и временем доступа к информации. Для сообщения о скорости чтения данных обычно указывают, во сколько раз дисковод вращает диск быстрее, чем дисководы для аудио компакт-дисков. Так дисководы одинарной скорости обеспечивают скорость чтения 150 Кбайт/с, с двойной скорости - около 300 Кбайт/с, четырехкратной скорости - около 600 Кбайт/с, шестикратной скорости –около 900 Кбайт/с, восьмикратной - около 1200 Кбайт/с и т.д. Интерфейс дисковода для компакт-дисков это тип контроллера, к которому дисковод должен присоединятся. В продаже имеются дисководы: • С нестандартным (proprietary) интерфейсом типа Sony, Panasonic и т.д. Это уже сильно устаревшие модели, снятые с производства, где-то в 1994 году. Они должны подключаться к соответствующим контроллерам, расположенным либо на столь же старых звуковых платах, либо на отдельных платах, поставляемых с дисководом. шириной ленты 1/4 дюйма, размером 82 на 62 на 15 мм (они часто обозначаются 3,5, так как кассеты вставляются в отсек шириной 3,5 дюйма). Классы стримеров Различные стримеры условно можно разделить на три уровня по области их применения. Стримеры начального класса, рассчитанные на индивидуального пользователя. Как правило, они имеют невысокую емкость - до 1 Гбайта, и низкое быстродействие - не более 500-800 Кбайт в сек. Стримеры среднего класса. Могут использоваться рабочими группами и подразделениями предприятий. Чаще всего их устанавливают на сервере локальной сети. Емкость таких стримеров - от 2 до 8 Гбайт, а скорость чтения и записи - 2-3 Мбайта в секунду. Стримеры высшего класса. Обычно используются для создания резервных копий больших объемов данных. Емкость - свыше 8 Гбайт, скорость чтения и записи - более 8 Мбайт в секунду. Мониторы и видеоконтроллеры. Монитор (дисплей) компьютера IBM PC предназначен для вывода на экран текстовой и графической информации. Монитор похож на телевизор, поскольку оба они формируют изображение с помощью кинескопа, но внутренне они сильно отличаются. Мониторы могут показывать более четкое и детальное изображение, чем любые телевизоры, зато телевизоры значительно интеллектуальнее - они должны расшифровывать полученный от антенны сигнал, отшлифовывать помехи и т. д., а монитор получает видеосигнал в готовом виде по кабелю от видеоконтроллера. Мониторы бывают цветные и монохромные, отличаются друг от друга по размеру (обычно диагональ кинескопа от 14 до 21 дюйма). Разрешение Монитор 800*600 14-дюймовый монитор 1024*768 15-дюймовый монитор с зерном, меньшим 0,28 мм или с зерном 0,28 мм с большим полем изображения - от 14,1 дюйма, т. е. 35,8 см, или почти любой 17-дюймовый монитор. 1280*1024 17-дюймовый монитор с зерном 0,25-0,26 мм (при зерне 0,26 мм также и с большим полем изображения: диагональ поля изображения –от 16,2 дюйма, т. е. 41,6 см), или практически любой монитор размером более 17 дюймов. 1600*1200 21-дюймовый монитор с зерном 0,25-0,26 мм при зерне 0,26 мм также и с большим полем изображения: диагональ поля изображения от 20,4дюйма, т. е. 52 см. Видеоконтроллеры Электронные схемы компьютера, обеспечивающие формирование сигнала и тем самым определяющие изображение, показываемое монитором, называется видеоконтроллером. Он обычно выполняется в виде специальной платы, вставляемой в разъем системной шины компьютера, но на многих компьютерах он входит в состав системной (материнской платы). видеоконтроллер получает от микропроцессора компьютера команды по формированию изображения, конструирует это изображение в своей служебной памяти-видеопамяти, и одновременно преобразует содержимое видеопамяти в сигнал, подаваемый на монитор-видеосигнал. На IBM PC- совместимых компьютерах видеоконтроллеры могут работать в различных режимах. Эти режимы бывают двух видов: текстовые и графические. Графический режим В графическом режиме работающая с монитором программа выводит изображение в виде прямоугольной сетки точек, цвет каждой из которых может задаваться отдельно. Т.о., на экран в графическом режиме можно выводить тексты, графики, рисунки и т. д. А при выводе текстов можно использовать шрифты, любые размеры, цвета и расположение букв. Большинство современных операционных систем и рассчитанные на них программы используют именно графический режим монитора. Текстовый режим В текстовом режиме монитор условно разбивается на отдельные участки- знакоместа, чаще всего на 25 строк по 80 символов (знакомест). В каждое знакоместо может быть введен один из 256 заранее заданных символов. В число этих символов входят буквы, цифры, знаки препинания и различные специальные символы. Для каждого знакоместа на экране работающая с экраном программа сообщает видеоконтроллеру всего два байта, байт с кодом символа и байт с кодом цвета символа и цвета фона. А видеоконтроллер по этим данным формирует изображение на экране. MDA,CGA,RGA и VGA- это видеостандарты, созданные фирмой IBM. Они использовались в подавляющем большинстве производимых в начале и середине 80-х годов видеоконтроллеров и мониторов. Цвет/моно Текстовые режимы Графические режимы MDA Моно 80*25, 2 цвета - CGA Цветной 80*25, 16 цветов 640*200,2цвета;320*2 00, 4 цвета. EGA Цветной 80*25 и 80*43,16 цветов 640*350,16цветов + режим CGA VGA цветной 80*25 и 80*50, 16 цветов 640*480,16цветов;320 *200,256 цветов + режим CGA и EGA. Цифровые мониторы TTL Термином TTL (Transistor Transistor Logic) обозначают стандартную серию цифровых микросхем, применяемых в электротехнике, сигналы имеют только два состояния: логической “1” и логического “0”. Монохромные мониторы Сигналы управления в монохромных мониторах формируются графическими картами MDA или Hercules. Понятие монохромный монитор означает, что точка на экране может быть только светлой или темной. Hercules – монитор способен отображать изображение с разрешением 728 на 348 точек, причем только в виде светлых и темных точек. Hercules – мониторы компактнее и легче других мониторов. Цифровые мониторы RGB(red, green, blue) Эти мониторы в основном предназначены для подключения к карте стандарта EGA. Эти мониторы по сравнению с мониторами Hercules имеет меньшее разрешение. У RGB-монитора каждый цветовой сигнал передается от карты к монитору в цифровом виде по отдельному проводнику. Аналоговые мониторы. Они работают с графическими картами стандарта VGA и выше, то есть 640*480 пикселов и более. Обозначение аналоговые основывается не на возможностях расширения, в отличие от TTL-мониторов, а на способе передачи информации о предоставляемых цветах от видеокарты к монитору. При работе в режиме True Color должно иметься соответствующее число линий для передачи палитры цветов с 24 ступенями глубины. Аналоговые передачи сигналов осуществляются в виде напряжения различных уровней. VGA-мониторы могут работать не только в цветном, но и в монохромном режиме. Мультичастотные мониторы. Все современные мониторы можно разделить на три группы. С фиксированной частотой, они воспринимают синхросигналы какой-нибудь одной частоты. С несколькими фиксированными частотами, они менее критичны к значениям частот синхроимпульсов и могут работать с набором из двух или более сочетаний частот. Мультичастотные (Multifrequrncy), они обладают способностью настраиваться на произвольные значения частот синхросигналов. Жидкокристаллические дисплеи LCD (Liquid Crystal Display) Этот экран состоит из двух стеклянных пластин, между которыми находится масса, содержащая жидкие кристаллы, которые могут изменять свою оптическую структуру и свойства в зависимости от приложенного к ним электрического заряда. Жидкие кристаллы сами не светятся, поэтому подобные мониторы нуждаются в подсветке (BackLight) или во внешнем освещении. Дальнейшее развитие LCD- мониторов направлено на представление цвета, то есть на изменение отдельными кристаллами своей окраски под действием электрических импульсов. Газо-плазменные мониторы Они имеют также две стеклянные пластины, между которыми находятся не кристаллы, а газовая смесь, которая высвечивается в соответственных местах под действием электрических импульсов. Недостатки этих мониторов – это невозможность использования в персональных переносных компьютерах, с аккумуляторным и батарейным питанием, из-за большого потребления тока. Характеристики мониторов Диагональ монитора Мониторы различного размера – чаще всего от 14 до 21 дюйма. Размер монитора определяется по диагонали кинескопа. Для пользователя, проводящего много времени за компьютером предпочтительнее иметь монитор размером 17 дюймов. В издательских, конструкторских и других применениях лучше иметь мониторы размером 20-21 дюйм. Зерно экрана Мониторы бывают с различным зерном, то есть расстояние между точками люминофора одного цвета. Размер зерна во многом определяет качество монитора и четкость показываемого им изображения. На качественных На настольных компьютерах наиболее часто используемым указательным устройством является мышь-манипулятор, представляющий собой небольшую коробочку с двумя или тремя кнопками, легко умещающуюся на ладони. В зависимости от принципа устройства, мыши делятся на: 1. Механические - в них при перемещении мыши внутри вращается шарик, и это вращение отслеживается механическими датчиками (колесиками); 2. Оптомеханические - в них при перемещении мыши внутри также вращается шарик, но вращение шарика отслеживается оптическими датчиками; 3. Оптические мыши – в них нет шарика и других движущихся (механических) частей. Эти мыши используются только вместе со специальными ковриками с нанесенной сеткой. Движение мыши по коврику отслеживается оптическими датчиками. Чтобы шарик оптомеханической или механической мыши не проскальзывал и меньше загрязнялся, рекомендуется перемещать мышь не по поверхности стола, а по специальному коврику, обеспечивающему надежное сцепление с шариком мыши. На большинстве мышей имеются только две кнопки. А на некоторых – три, однако, средняя кнопка практически никогда не используется. Бывают, однако, и мыши с множеством кнопок (сорока), они используются со специальными драйверами, позволяющими приписывать дополнительным кнопкам определенные действия (скажем, ввод той или иной команды). При работе с некоторыми программами такие мыши могут значительно увеличить производительность труда. Трекбол По принципу трекбол можно сравнить с мышью, которая лежит на спине. Обычно трекбол использует оптико-механический принцип регистрации положения шарика. Большинство трекболов управляется через последовательный порт (смотри последовательный_порт). Существует два основных различия трекбола от мыши. • Трекбол обладает стабильностью (неподвижностью) за счет тяжелого корпуса. • Площадка для движения, необходимая мышке, трекболу не нужна. Специально для обладателей РС типа Notebook имеются встроенные или подключаемые трекболы. Джойстики Джойстик является устройством ввода, которое заняло прочную позицию, прежде всего в области компьютерных игр. Существует два типа джойстиков. • Цифровые джойстики, оснащены 9-контактным разъемом (гнездо). • Аналоговые джойстики, оснащены 15-контактным и двух разрядным разъемом (вилка). Аналоговый джойстик имеет существенное различие перед цифровым джойстиком. Цифровой джойстик реагирует в основном на положение управляющей ручки (влево, вправо, вниз, вверх) и статус кнопки “огонь”. Аналоговые регистрируют положение ручки управления, что обеспечивает более точное управление игрой. Джойстик обычно подключается к компьютеру через игровой порт (смотри игровой_порт). Световое перо Световое перо исполнено в виде шариковой ручки, в которую вместо шарика вмонтирован фотоэлемент. В зависимости от исполнения световое перо оснащается одной или более кнопками, которые выполняют функции сходные с мышкой. Световое перо функционирует только совместно с монитором. При соприкосновении стержня с поверхностью монитора элемент излучения регистрируется фото сенсором светового пера, таким образом, световое перо может заменить мышь. Другая область применения светового пера – это совместное использование с дигитайзером. В этом случае световое перо выполняет пишущую функцию, этот способ ввода информации поддерживается различным программным обеспечением. Например, чтобы превратить рукописный текст в цифровые коды. Цифровые камеры Цифровые камеры в настоящее время являются одним из лучших инструментов для качественного ввода изображения в РС. Такая камера имеет оптику аналогичную оптике фотоаппарата. Камера, сканируя изображение, принимает и преобразует его цифровую форму CCD-чип (Charge Coupled Device) – это прибор с зарядовой связью, который преобразует оптический сигнал в электрический сигнал, причем считываемый с ПЗС аналоговый сигнал перекодируется в цифровой при помощи аналогово-цифрового преобразователя и поэтому может непосредственно вводится в РС. Дигитайзеры Дигитайзеры (графические планшеты) - это устройство для ручного ввода изображения в компьютер. Дигитайзеры используются в системах автоматического конструирования САПР для ввода чертежей в компьютер, а также художниками для рисования с помощью компьютера. С помощью дигитайзера человек может указывать на элементы изображения (скажем, показывая на объекты чертежа или, рисуя рисунок), а дигитайзер автоматически вводит координаты точек, на которые указывает человек, в компьютер. Многие дигитайзеры позволяют вводить также и силу нажатия. В зависимости от областей применения используются размером от стандартного листа бумаги (21 на 29,7 см) до формата А0 (84 на 119 см). Сканер Сканер - это устройство для считывания графической и текстовой информации в компьютер. Сканеры могут вводить в компьютер рисунки. С помощью специального программного обеспечения компьютер может распознавать символы во введенной через сканер картинке, это позволяет быстро вводить напечатанный (а иногда и рукописный) текст в компьютер. Сканеры бывают настольные (они обрабатывают весь лист бумаги целиком), барабанные (они пропускают лист бумаги сквозь себя) и ручные (их надо проводить над нужным рисунком или текстом. Сканеры отличаются друг от друга разрешающей способностью, количеством воспринимаемых цветов или оттенков. Платы ЦАП и АЦП Во многих технических, медицинских, биологических и иных приложениях требуется вводить сигналы от внешних датчиков, анализировать их и на основании этих данных управлять внешними устройствами. Например, в больнице может быть полезно подключить датчики к компьютеру, снимающие кардиограмму пациентов, чтобы он записывал кардиограммы, а при тревожных изменениях кардиограммы какого либо из пациентов - вызывал врача. В теплице может быть полезно подключить датчики температуры, влажности, газового состава и т. д., что бы он на основе этих данных поддерживал оптимальный климат. Для ввода сигналов в компьютере должна находится специальная плата, преобразующая поступающие от датчиков аналоговые сигналы в воспринимаемые устройством цифровые сигналы. Эта плата называется платой аналогово-цифрового преобразователя - АЦП. Она периодически (скажем, 100 или 1000 раз в секунду) измеряет уровень входного сигнала и записывает его в память компьютера. Для управления внешними устройствами необходимо обратное преобразование - из цифровой формы в аналоговую форму, ее выполняет другая плата - ЦАП. Часто функции ЦАП и АЦП реализуются на одной плате - плате ЦАП/АЦП. Различные платы отличаются друг от друга числом каналов обработки сигналов, максимальной частотой вводимых сигналов, возможностью использования в медицине и т. д. Устройства вывода Матричные принтеры Первое отличие матричных принтеров – это количество иголок в печатающей головке принтера. В дешевых моделях используются печатающая головка с 9 стержнями (поэтому они называются 9-точечными принтерами). Качество печати у таких принтеров – посредственное, его можно улучшить с помощью печати в несколько проходов (от двух до четырех), но это замедляет печать. Более качественная и быстрая печать обеспечивается принтерами с 24 печатающими иголками (24-точечными принтерами). Бывают принтеры с 48 иголками, они обеспечивают еще более качественную печать. Еще одно отличие матричных принтеров это ширина каретки, то есть ширина листа бумаги или бумажной ленты, на которых может печатать принтер. Принтеры с узкой кареткой могут печатать на листах формата А4 (210 на 297 мм), вставленных узкой стороной. Модели с широкой кареткой могут печатать на бумажной ленте с шириной до 420 мм или на листах формата А3 (420 на 297 мм), вставленных узкой стороной, а также на листах формата А4, вставленных широкой стороной. Модели с широкой кареткой удобны для печати различных таблиц и бухгалтерских документов. Скорость печати У дешевых моделей принтеров скорость печати ниже, а у более дорогих – выше. В текстовом режиме, то есть при встроенными в принтер шрифтами, скорость печати измеряется символами в секунду (cps, characters per socond). В черновом режиме обычно она составляет от 60 до 300 cps, в режиме качественной печати – раза в два-три меньше. Иначе говоря, скорость печати, содержащего около 3000 символов, в черновом режиме, получается, от 10 до 50 с, в режиме качественной печати от 25 до 100 с. При печати графики (в страницу формата А4) – типичная скорость печати от 30 с до 3 мин за страницу. Поддержка шрифтов Матричные принтеры обычно обеспечивают очень ограниченные возможности по использованию шрифтов. Эти принтеры, как правило, могут хранить только шрифты фиксированного размера, причем количество этих обычно не велико. Возможность цветной печати Некоторые матричные принтеры обеспечивают возможность цветной печати. Это делается также как и на печатающей машинке – с помощью красящей ленты, состоящей из горизонтальных полос разного цвета. Цветная печать позволяет выделить некоторые слова в печатаемом тексте, однако печать рисунков выполняется крайне некачественно.
Docsity logo