Docsity
Docsity

Подготовься к экзаменам
Подготовься к экзаменам

Учись благодаря многочисленным ресурсам, которые есть на Docsity


Получи баллы для скачивания
Получи баллы для скачивания

Заработай баллы, помогая другим студентам, или приобретай их по тарифом Премиум


Руководства и советы
Руководства и советы

ПК на основе процессора INTEL 80286 реферат по информатике , Сочинения из Информатика

ПК на основе процессора INTEL 80286 реферат по информатике

Вид: Сочинения

2016/2017

Загружен 11.04.2017

refbank13253
refbank13253 🇷🇺

9 документы

1 / 19

Toggle sidebar

Сопутствующие документы


Частичный предварительный просмотр текста

Скачай ПК на основе процессора INTEL 80286 реферат по информатике и еще Сочинения в формате PDF Информатика только на Docsity! Министерство образования Российской Федерации Кафедра: «Электронные приборы и устройства» Курсовая работа «ПК на основе процессора INTEL 80286» Выполнил: ст-т гр. ЭПУ - 42 Козачук Виталий Михайлович Проверил: доц. Каф ЭПУ Джумалиев Владимир Сергеевич Саратов 2001 г. СОДЕРЖАНИЕ ВВЕДЕНИЕ 2 КОРПУСА ПРОЦЕССОРОВ 3 ФУНКЦИОНИРОВАНИЕ МИКРОКОМПЬЮТЕРОВ С ШИННОЙ ОРГАНИЗАЦИЕЙ 3 ОРГАНИЗАЦИЯ СИСТЕМЫ ШИН L,X,S и M В КОМПЬЮТЕРЕ PC/ AT 4 РЕГИСТРЫ ПРОЦЕССОРА 80286 4 Память 6 FPM 7 ЕDO 7 BEDO 7 Вспомогательные микросхемы для СМПУ 8 Тактовый генератор 8 Контролер прерываний 8 Контролер прямого доступа к памяти 8 Другие вспомогательные микросхемы 9 Набор микросхем или chipset 9 Системные локальные шины 9 Шина ISA 9 PQFP – Plastic Quad Flat Pack, пластиковый корпус с выводами по сторонам квадрата; SQFP – Small Quad Flat Pack, миниатюрный корпус с выводами по сторонам квадрата; PPGA – Plastic Pin Grid Array, термоустойчивый пластмассовый корпус SPGA; Tape Garier – миниатюрный корпус с ленточным носителем PGA, PPGA, SPGA обычно устанавливаются в ZIF-Socket (Zero ilnsestion Force) – колодка (сокет) с нулевым усилением установки. ФУНКЦИОНИРОВАНИЕ МИКРОКОМПЬЮТЕРОВ С ШИННОЙ ОРГАНИЗАЦИЕЙ Шины микрокомпьютера образует группа линий передачи сигналов с адресной информацией, данных, а также управляющих сигналов. Фактически ее можно разделить на три части: адресную шину, шину данных и шину управляющих сигналов. Уровни этих сигналов в данный момент времени определяют состояние системы в этот момент. На рис. 1 изображены синхрогенератор 82284, микропроцессор 80286 и шинный контроллер 82288. Кроме того, показаны три шины: адреса, данных и управляющих сигналов. Синхрогенератор генерирует тактовый сигнал CLK для синхронизации внутреннего функционирования процессора и других микросхем. Сигнал RESET производит сброс процессора в начальное состояние. Это состояние показано на рисунке упрощенно. Сигнал – READY также формируется с помощью синхрогенератора. Он предназначен для удлинения циклов при работе с медленными периферийными устройствами. На адресную шину, состоящую из 24 линий, микропроцессор выставляет адрес байта или слова, который будет пересылаться по шине данных в процессор или из него. Кроме того, шина адреса используется микропроцессором для указания адресов периферийных портов, с которыми производится обмен данными. Шина данных состоит из 16 линий. по которым возможна передача как отдельных байтов. так и двухбайтовых слов. При пересылке байтов возможна передача и по старшим 8 линиям, и по младшим. Шина данных двунаправлена, так как передача байтов и слов может производится как в микропроцессор, так и из него. Шина управления формируется сигналами, поступающими непосредственно от микропроцессора, сигналами от шинного контроллера, а также сигналами, идущими к микропроцессору от других микросхем и периферийных адаптеров. Микропроцессор использует шинный контроллер для формирования управляющих сигналов, определяющих перенос данных по шине. Он выставляет три сигнала -SO, -SI, M/- IO, которые определяют тип цикла шины (подтверждение прерывания, чтение порта ввода/ вывода, останов, чтение памяти, запись в память). На основании значений этих сигналов шинный контроллер формирует управляющие сигналы, контролирующие динамику данного типа шины. Для того, чтобы понять динамику работы, разберем, каким образом осуществляется процессором чтение слов из оперативной памяти. Это происходит в течение 4 тактов CLK, или 2 состояний процессора (т.е. каждое состояние процессора длится 2 такта синхросигнала CLK). Во время первого состояния, обозначаемого, как Т 4s 0, процессор выставляет на адресную шину значение адреса, по которому будет читаться слово. Кроме того, он формирует на шине совместно с шинным контроллером соответствующие значения управляющих сигналов. Эти сигналы и адрес обрабатываются схемой управления памятью, в результате чего, начиная с середины второго состояния процессора Т 4c 0 (т.е. в начале четвертого такта CLK), на шине данных появляется значение содержимого соответствующего слова из оперативной памяти. И наконец, процессор считывает значение этого слова с шины данных. На этом перенос (копирование) значения слова из памяти в процессор заканчивается. Таким образом, если частота кварцевого генератора, определяющая частоту CLK, равна 20 МГц, то максимальная пропускная способность шины данных равна (20/4) миллионов слов в секунду, или 10 В/сек. Реальная пропускная способность существенно ниже. ОРГАНИЗАЦИЯ СИСТЕМЫ ШИН L,X,S и M В КОМПЬЮТЕРЕ PC/AT На самом деле, в реальном компьютере имеется не одна, а несколько шин (рис. 2). Основных шин всего три, а обозначаются они как L- шина, S- шина, X- шина. Нами ране рассматривалась L-шина. Можно ввести понятие удаленности шины от процессора, считая, что чем больше буферов отделяют шину, тем она более удалена от процессора. Основной шиной, связывающей компьютер в единое целое, является S- шина. Именно она выведена на 8 специальных разъемов слотов. Эти слоты хорошо видны на системной плате компьютера. В них стоят платы периферийных адаптеров. Линии адреса, идущие от микропроцессора, образуют так называемую L- шину. Для передачи этого адреса на S- шину имеются специальные буферные регистры- защелки. Эти регистры- защелки не только передают адрес с L- шины на S- шину, но так же разъединяют их в случае необходимости. Такая необходимость возникает, например, когда осуществляется прямой доступ к памяти. В этом случае на S- шину выставляют контроллер прямого доступа 8237А и так называемые страничные регистры. Они подключены к X- шине, которая так же через буферные регистры соединена с системной S F 02 Dшиной. Таким образом, наличие трех шин позволяет выставлять адреса на системную шину различным микросхемам. Все микросхемы на системной плате, кроме процессора и сопроцессора, подключены к X- шине, в которой имеется адресная часть (XА- шина), линия данных (XD- шина) и управляющие сигналы (XCTRL- шина). Поэтому они отделены от процессора двумя буферами: между L- и S- шинами и между S- и X- шинами. Кроме этих трех шин в компьютере имеется M- шина, предназначенная для отделения системной S- шины от оперативной памяти. РЕГИСТРЫ ПРОЦЕССОРА 80286 Набор регистров процессора 80286 представляет собой строгое расширение набора регистров 8086, который имел 14 регистров. В процессоре 80286 появились дополнительно еще 5 новых регистров, в результате чего их общее число увеличилось до 19. Далее рассматриваются так называемые "видимые" регистры, содержимое которых можно либо прочитать, либо изменить программным способом. Отметим, что в процессоре имеются "невидимые регистры", хранящие различную информацию для работы процессора и ускоряющие его работу. Регистры представлены на рисунке ("невидимые" изображены одинарной линией). AX AH AL BX BH BL CX CH CL DX DH DL SP BP SI DI Права доступа к сегменту CS Базовый адрес сегмента CS Размер сегмента CS CS Права доступа к сегменту DS Базовый адрес сегмента DS Размер сегмента DS DS Права доступа к сегменту SS Базовый адрес сегмента SS Размер сегмента SS SS Права доступа к сегменту ES Базовый адрес сегмента ES Размер сегмента ES ES IP F MSW Базовый адрес таблицы GDTR Базовый адрес таблицы IDTR Права доступа Базовый адрес сегмента с локальной дескрипторной таблицей Размер сегмента с локальной таблицей LDTR Права доступа Базовый адрес сегмента состояния текущей задачи Размер сегмента с состоянием задачи TR долго не уйдет со сцены - это подтверждается и тем, что ведущие производители чипов ОЗУ начали выпуск модулей со 128 Мб. BEDO (burst EDO - EDO с пакетной пересылкой данных) Архитектура BEDO была разработана в компании VIA Technologies - известном производителе чипсетов для материнских плат. В ней наряду с технологиями FPM и EDO используется пересылка данных пакетами (burst). Новизна такого метода в том, что при первом обращении данные автоматически считываются сразу же для нескольких последовательных слов (ведь ядро устроено так, что всегда считывается целая строка, то есть все столбцы становятся известны). При этом для пересылки burst-пакета задаются адрес строки и адрес только самого первого "столбца", а внутренний счетчик автоматически следит за тем, чтобы был передан весь пакет. Это исключает необходимость пересылать адреса для последующих ячеек. Таким образом, благодаря burst-технологии увеличивается эффективность последовательного чтения больших массивов данных. Новый способ пересылки сокращает время считывания каждого слова еще на такт, что позволяет BEDO работать по схеме 5–1–1–1 (всего 8 тактов). Однако для этого необходима поддержка со стороны набора системной логики. В число таких наборов входят Intel 430 HX, VIA 580VP, 590VP. Максимальная паспортная рабочая частота BEDO - 66 МГц, хотя ИС хорошо функционируют на частоте вплоть до 83 МГц. BEDO еще не успела широко распространиться, как была вытеснена SDRAM, разработанной приблизительно в то же время Intel. Завершая рассмотрение асинхронных типов ИС, отметим, что их быстродействие принято характеризовать временем цикла обращения, то есть минимальным периодом, с которым можно выполнить циклическое обращение по произвольным адресам (все пять операций). Именно это имеется в виду, когда говорят о "60-наносекундном модуле". При переходе к синхронной памяти (использующей для работы внешнюю тактовую частоту) вместо продолжительности цикла доступа стали применять минимально допустимый период тактовой частоты. Так появились "10-нс модули памяти", "8-нс" и даже "7-нс". Увы, за один такт добраться к произвольным данным не могут и они. Вспомогательные микросхемы для СМПУ. Тактовый генератор Для получения стабильной определенной частоты на системной плате могут находиться 1 или 2 кварцевых асоцилятора. Повышать частоту тактовых импульсов можно лишь до определенного предела, фиксированного для каждой модели микропроцессора. Для многих микропроцессоров существует и нижний уровень ограничения на тактовую частоту. Дело в том, что отдельные узлы микропроцессора могут быть построены по принципу динамической памяти, и требовать постоянной регенерации. Выходной сигнал основного кварцевого генератора предварительно делится на 2 и обозначается как CLK2IN. Тактовый сигнал для шины ISA обычно равен 8 МГц. Он обычно обозначается как ATCLK или BBVSCLK. При переключении кнопки Turbo тот или иной тактовый сигнал подключается к соответствующему входу микропроцессора. Системная шина может тактироваться либо сигналом CLK2IN, либо CLK2IN/2, либо ATCLK. Для каналов DMA на системной плате используется еще один сигнал SCLK зависящий от CLK2IN и от ATCLK. Для часов реального времени на системной плате используется отдельный кварц 32768 Кбит. Контроллер прерываний В первых IBM PC использовалась микросхема Intel 8259 (I8259) имеющая 8 входов для сигналов прерываний. Контроллер программируется на установление приоритетов прерываний, наивысшим приоритетом обладает линии IRQ0, наименьшим IRQ7. Значит в IBM PC/AT количество линий прерываний увеличено до 15 путем каскадного включения двух микросхем I8259 при котором выход второго контроллера подключался к входу IRQ2 первого. Таким образом, линии IRQ8-IRQ15 имеют приоритет ниже, чем IRQ1, но выше чем IRQ3. Контроллер прямого доступа к памяти В IBM PC/XT для организации прямого доступа к памяти использовалась одна 4 контактная микросхема I8237. Канал 0 которой предназначен для регенерации динамической памяти. Каналы 2 и 3 предназначены для управления высокоскоростной передачей данных между дисководов системных дисков винчестеров и операционной памятью. Только канал 1 DMA был доступен для дополнительного оборудования. IBM PC/AT имеет уже 7 каналов прямого доступа к памяти. В первых компьютерах это достигалось каскадным включением двух микросхем I8237. Так как прямой обмен данными между операционной памятью и периферийными устройствами имеет существенное ограничение, в том числе и по скорости то PC/AT задействован только канал 2 для обмена с приводом гибкого диска. Для первых 4 каналов с 0 по 3 передача данных осуществляется побайтно. Для каналов 5-7 16 разрядными словами. Другие вспомогательные микросхемы Таймеры, реализованные ранее на микросхеме I8254 и часы реального времени MC146818A. В зависимости от типа процессора на системной плате могут располагаться контроллеры шины и памяти, системный и периферийный контроллеры, кэш контроллер, а также буфера для данных и адресов. Набор микросхем или chipset Современный PC уже не использует отдельные чипы контроллеров 8259 и 8237. Их функции реализованы в СБИС системных и периферийных контроллеров. На системных платах вместо большого количества микросхем средней степени интеграции MSI заменено на несколько от 1 до 4 СБИС (VLSI). Такие VLSI называют набором микросхем или chipset. Они занимают меньше места, потребляют меньший ток, имеют более высокую надежность. Например, набор Triton (8243 0FX) фирмы Intel поддерживает специализацию локальной шины PCI, синхронную (конвейерную) и асинхронную кэш память, а также EDO и FPMDRAM. Он имеет также встроенный контроллер Enhanced IDE устройств. В большинство наборов разных фирм тем или иным образом входит периферийный контроллер, например микросхема 82С206 или ей подобная, функционально содержащая 2 контроллера прерываний типа 8259, 2 контроллера прямого доступа к памяти типа 8237, таймер типа 8254, часы реального времени и более 100 байт CMOS RAM для хранения системной конфигурации. Системные локальные шины Передачей информации по шине управляет одно из подключенных к ней устройств или специально выделенный для этого узел называемый арбитром шины. Системная шина IBM PC и PC/XT была предназначена для одновременной передачи только 8 бит информации, она имела 20 адресных линий (адресное пространство 1Мбайт), для работы с внешними устройствами в этой шине имелись 4 линии адресных прерываний и 4 линии запросов прямого доступа к памяти. Для подключений плат расширения использовались 62 контактные разъемы. Системной шиной микропроцессор синхронизировался от одного тактового генератора с частотой 4,77МГц. Теоретическая скорость передачи могла достигать 4,5Мбайт в секунду. Шина ISA Шина ISA разрабатывалась для возможностей микропроцессора Intel 286. Она имела 36 контактный разъем для платы расширения, 16 линий данных и 24 адресных линии. Поэтому имелась возможность обращаться на прямую к 16 Мбайтам памяти. Линий аппаратных прерываний 15, каналов DMA 7. Она полностью включала в себя возможности 8 разрядной шины. Системные платы с шиной ISA допускали возможность синхронизации работы самой шины и микропроцессора разными тактовыми частотами, что позволяло устройствам на платах расширения работать медленнее, чем микропроцессор. Это стало актуальным, когда тактовая частота микропроцессора превысила 10-12 МГц. Шина стала работать асинхронно с процессором на частоте 8 МГц. Теоретическая максимальная скорость передачи 16 Мбайт в секунду. Шина ESA Эта шина разрабатывалась для микропроцессора 386 и должна была обеспечить 32 разрядную передачу данных в том числе и в режиме прямого доступа к памяти, наибольший возможный объем адресуемой памяти, улучшение системы прерываний и арбитраж прямого доступа к памяти, автоматическую конфигурацию системы и плат расширения. В ESA разъем на системной плате может вставляться кроме специальных ESA плат 8 либо 16 разрядные платы расширения. Это обеспечивается, что ESA разъемы имеют 2 ряда контактов, один из которых верхний исполняет сигналы шины ISA, нижний ESA. Контакты в соединителях ESA расположены, так что рядом с каждым сигнальным находится контакт земля. Благодаря этому к минимальному сведены вероятности генерации помех и восприимчивость к помехам. Шина ESA позволяет адресовать 4Гбайтное адресное пространство. Доступ, к которому может иметь не только центральный процессор, но и платы управляющих устройств типа Bus master, т.е. устройства способные управлять передачей данных по шине, а также устройства имеющие возможность организовать режим прямого доступа к памяти. Стандарт ESA поддерживает многопроцессорную архитектуру для интеллектуальных плат с собственными микропроцессорами. Поэтому данные, например, от контроллера жестких дисков, графических контроллеров, контроллеров сети могут обрабатываться независимо без загрузки главного процессора. Теоретическая максимальная скорость передачи в пакетном режиме может достичь 33 Мбайт в секунду, в стандартном не превосходит значения шины ESA. На ESA предусматривается централизованный метод управления через системный арбитр. Таким образом, поддерживается использование ведущих устройств на шине. Однако возможно также представление шины запрашивающим устройствам по циклическому принципу. В ESA имеется 7 каналов прямого доступа к памяти. Контроллер прямого доступа к памяти имеет возможность поддерживать 8, 16 и 32 разрядные режимы передачи данных. В общем случае возможно выполнение 1 из 4 циклов обмена между устройством прямого доступа к памяти и памятью системы. Это ISA совместимые циклы, использующие для передачи данных 8 контактов шины, циклы типа A исполняемые за 6 тактов шины, циклы типа B исполняемые за 4 такта шины и циклы типа C исполняемые за 1 такт шины. Типы A,B и C поддерживаются 8, 16 и 32 разрядными устройствами, причем возможно автоматическое изменение ширины данных при передаче в несоответствующие размеры памяти. Приоритет прямого доступа к памяти может быть либо переменным, либо фиксированным. Линии прерывания шины ISA, по которым запросы передаются в виде фронтов сигналов, сильно подвержены импульсным помехам. Поэтому в системе ESA кроме таких, предусматривается также сигнал прерываний активный по уровню. Для компьютеров с шиной ESA предусмотрена автоматически конфигурированная система, поэтому обычно с платами расширения изготовители поставляют специальные файлы конфигурации. Информация, из которых исполняется на этапе подготовки системы к работе. В архитектуре ESA предусматривается выделение определенных групп адресов ввода вывода для конкретных слотов шины, каждому разъему отводят 4 Кбайта адресного диапазона. Локальные шины Разработчики компьютеров на микросхемах 386, 486 начали использовать раздельные шины для памяти и устройств ввода вывода, что позволило работать с памятью с наивысшей для нее скоростью, тем не менее, при таком подходе вся система не обеспечивает Режим защиты предусматривает расширенное адресное пространство физической и виртуальной памяти, механизмы защиты памяти, новые операции по поддержке операционных систем и виртуальной памяти. Режим защиты обеспечивает виртуальное адресное пространство на 1 гигабайт для каждой задачи в физическом адресном пространстве на 16 Мегабайт. виртуальное пространство может быть больше физического, т.к. любое использование адреса, который не распределен в физической памяти, вызывает возникновение исключительной ситуации, требующей перезапуска. Как и режим реальной адресации, режим защиты использует 32-разрядные указатели, состоящие из 16-разрядного искателя и компонентов смещения. искатель, однако, определяет индекс в резидентной таблице памяти, а не старшие 16 разрядов адреса реальной памяти. 24- разрядный базовый адрес желаемого сегмента памяти получают из таблиц памяти. для получения физического адреса к базовому адресу сегмента добавляется 16-разрядное смещение. микропроцессор автоматически обращается к таблицам, когда в регистр сегмента загружается искатель. все команды, выполняющие загрузку регистра, обращаются к таблицам памяти без дополнительной программной поддержки. таблицы памяти содержат 8- байтовые значения, называемые описателями. Производительность системы Микропроцессор 80286 работает с частотой 6 Мгц, в результате чего период синхроимпульсов составляет 167 Нс. Цикл шины требует 3 периода синхроимпульсов ( включая один цикл ожидания); таким образом достигается 500-наносекундный 16-разрядный цикл работы микропроцессора. операции передачи данных по 8-разрядной шине на 8-разрядные устройства занимают 6 периодов синхроимпульсов (включая 4 цикла ожидания), в результате чего достигается 1000- наносекундный цикл работы микропроцессора. Операции передачи данных по 16-разрядной шине на 8-разрядные устройства занимают 12 периодов синхроимпульсов ( включая 10 циклов ожидания ввода-вывода), в результате чего достигается 2000-наносекундный цикл работы микропроцессора. Системные прерывания Микропроцессор немаскируемых прерываний (НМП) 80286 и две микросхемы контроллера прерываний 8259A обеспечивают 16 уровней системных прерываний. ниже эти уровни приводятся в порядке уменьшения приоритета. Замечание: как все прерывания, так и любое из них в отдельности, могут маскироваться (включая НМП микропроцессора). Уровень Функция Микропроцессор НМП Контроль чётности или каналов ввода F 02 Dвывода Контроллеры прерываний № Уровень Функция 1 IRQ 0 IRQ 1 IRQ 2 Выход 0 таймера Клавиатура (выходной буфер полн) Прерывание от CTRL 2 2 IRQ 8 IRQ 9 IRQ 10 IRQ 11 IRQ 12 IRQ 13 IRQ 14 IRQ 15 Часы реального времени Переадресовка программы к INT OAM (IRQ 2) Резерв Резерв Резерв Сопроцессор Контролер жёсткого диска Резерв 3 IRQ 3 IRQ 4 IRQ 5 IRQ 6 IRQ 7 Последовательный порт 2 Последовательный порт 1 Параллельный порт 2 Контроллер накопитель на ГМД Параллельный порт 1 Сопроцессор. Описание Математический сопроцессор персонального компьютера IBM PC AT позволяет ему выполнять скоростные арифметические и логарифмические операции, а также тригонометрические функции с высокой точностью. Сопроцессор работает параллельно с микропроцессором, это сокращает время вычислений, позволяя сопроцессору выполнять математические операции, в то время как микропроцессор занимается выполнением других функций. Сопроцессор работает с семью типами числовых данных, которые делятся на следующие три класса: • двоичные целые числа (3 типа); • десятичные целые числа (1 тип); • действительные числа (3 типа). Условия программирования Сопроцессор предлагает расширенный набор регистров, команд и типов данных для микропроцессора. Сопроцессор имеет восемь 80-разрядных регистров, которые эквивалентны емкости сорока 16-разрядных регистров в микропроцессоре. В регистрах можно хранить во время вычислений временные и постоянные результаты, что сокращает расход памяти, повышает быстродействие, а также улучшает возможности доступа к шине. Пространство регистров можно использовать как стек или как постоянный набор регистров. При использовании пространства в качестве стека работа ведется только с двумя верхними стековыми элементами. В следующей таблице показано представление больших и малых чисел в каждом типе данных. Условия аппаратного обеспечения Математический сопроцессор использует тот же генератор синхроимпульсов, что и микропроцессор. Он работает с частотой, равной одной трети частоты системных синхроимпульсов микропроцессора. Сопроцессор подсоединен так, что он функционирует как устройство ввода-вывода через порт ввода-вывода с адресами 00F8, 00FA и 00FC. Микропроцессор посылает коды операций и операнды в эти порты ввода-вывода, через них он также принимает и записывает в память результаты вычислений. Сигнал занятости сопроцессора сообщает микропроцессору о том, что он исполняет операции. По команде "WAIT" микропроцессор ожидает, пока сопроцессор закончит исполнение. Сопроцессор выявляет шесть различных исключительных ситуаций, которые могут возникнуть во время исполнения команды. Если маска соответствующего исключения в сопроцессоре не установлена, сопроцессор устанавливает сигнал ошибки, по которому генерируется прерывание 13, и сигнал 'BUSY' фиксируется в установленном состоянии. Сигнал 'BUSY' может быть очищен командой записи 8-разрядного ввода-вывода по адресу F0, при условии что D0-D7 равны нулю. Код самоконтроля при включении питания в системном ПЗУ разрешает прерывание 13 и устанавливает вектор этого прерывания, указывающий на рабочую программу ПЗУ. Эта программа очищает защелку сигнала 'BUSY' и передает затем управление по адресу, указанному вектором немаскированного прерывания. Это позволяет использовать код, записанный для любого персонального компьютера IBM, в IBM PC AT. Драйвер немаскируемых прерываний должен прочитать состояние сопроцессора, чтобы определить, было ли НМП вызвано сопроцессором. Если нет, то управление передается исходному драйверу НМП. Сопроцессор предусматривает два режима работы, подобные двум режимам микропроцессора. после сброса при включении питания или при операции записи ввода - вывода в порт с адресом 00F1 сопроцессор находится в режиме реальной адресации. Этот режим совместим с сопроцессором 8087, который используется с другими персональными компьютерами IBM. Сопроцессор может быть переведен в режим защиты с помощью команды SETPM ESC. В режим реальной адресации он может возвратиться, если будет выполнена операция записи ввода-вывода в порт с адресом 00F1, при условии что D0-D7 равны 0. Базовая система ввода-вывода (BIOS) Базовая система ввода-вывода (BIOS) находится в ПЗУ на системной плате. Она обеспечивает управление уровнями для основных устройств ввода-вывода в системе. На дополнительных адаптерах могут размещаться дополнительные модули ПЗУ, которые обеспечивают управление уровнями устройства на этом дополнительном адаптере. Рабочие программы BIOS позволяют программисту, работающему на языке ассемблера, выполнять операции ввода-вывода в блоковом (диски или дискеты) или в символьном формате без учета адреса и параметров устройства. BIOS предусматривает такие системные услуги, как определение времени суток и размера памяти.
Docsity logo