Docsity
Docsity

Подготовься к экзаменам
Подготовься к экзаменам

Учись благодаря многочисленным ресурсам, которые есть на Docsity


Получи баллы для скачивания
Получи баллы для скачивания

Заработай баллы, помогая другим студентам, или приобретай их по тарифом Премиум


Руководства и советы
Руководства и советы

Программирование в LE-технология Microsoft Windows реферат по информатике , Сочинения из Информатика

Программирование в LE-технология Microsoft Windows реферат по информатике

Вид: Сочинения

2016/2017

Загружен 11.04.2017

refbank10549
refbank10549 🇷🇺

1

(1)

10 документы

1 / 9

Toggle sidebar

Сопутствующие документы


Частичный предварительный просмотр текста

Скачай Программирование в LE-технология Microsoft Windows реферат по информатике и еще Сочинения в формате PDF Информатика только на Docsity! Программирование в LE-технология Microsoft Windows Предисловие Наиболее распространенным языком программирования последнего десятилетия безусловно является С. Этому способствовали такие его особенности, как лаконичность, мощность, гибкость, мобильность. Вместе с тем, стремительное усложнение приложений, для реализации которых применяются традиционные процедурно-ориентированнные языки программирования и, в частности С, заставляют говорить об определенном кризисе в их использовании, связанном прежде всего с недостаточной надежностью и выразительной способностью. Подобных недостатков во многом лишены языки объектно-ориентированнго программирования (ООП), в сонове которыхлежит идея моделирования объектов посредством иерархически связанных классов. Отдельно взятый класс рассматривается как совакупность множества данных и операций над ними, причем доступ к элементам данных класса возможен только посредством операций этого класса. Установление четкой взаимозависимости между данными и операциями ведет к большой целостности данных и значительно повышает надежность программ по сравнению с традиционными языками программирования. Кроме того, идея программирования с помощью классов во многом использует тот же подход, который позволяет людям формировать модели объектов реального мира. Впервые идеи ООП были реализованы в середине 60-х годов в языке программирования Симула-67. Последний, однако, не нашел в то время широкого распространения как в силу своей относительно меньшей производительности по сравнению с традиционными языками типа FORTRAN, ALGOL, PL/1 так и, возможно, неадекватности предлагаемых средств решаемым в то время задачи. Еще одним важным ограничением для распространеия Симулы-67 стали трудности, с которыми пришлось столкнуться большинству программистов при его изучении. Дело в том, что наряду с целым рядом безусловных достоинств, идеи ООП обладают и одним существенным недостатком - они далеко не просты для понимания и особенно для освоения с целью практического использования. С++ - это объектно-ориентированыый язык, то есть язык, позволяющий программисту оперировать объектами некоторых типов, предварительно им определенным. Название языка "С++" отражает эволюционный характер изменения языка С (запись "++", в языке С, означает, что к какой-то переменной прибавляется единица). Он имеет еще более мощные и гибкие средства для написания эффективных программ, чем С, от которого он произошел. Человек, программмирующий на традиционных языках, может просто потерять голову от тех возможностей, которые предоставляет С++. Но не менее важным является то, что такой распространенный и универсальный язык, как С, сохранен в качестве основы. С прост, эффективен, переносим. Чего только нет в языке С: строковых данных нет, матриц нет, средств параллельного программирования тоже нет. Нет даже ввода-вывода. Типы, операции и операторы С очень близки к тому, с чем мы имеем дело в Ассемблере,- числа, адреса, арифметические и логические действия, циклы... Кроме того, многие особенности С недвусмысленно намекаю компилятору, как сократить код и время исполнения программы. Эти характерные черты языка С позволяют написать эффективно работающий и не слишком сложный компилятор. И хотя в машинных кодах на разных компьютерах элементарные операции обозначаютс по-разному, вряд ли разработчику компилятора придет в голову интерпретировать простейшие выражения каким-нибудь оригинальным способом. Именно поэтому язык С "идет везде и на всем", программы, написанные на нем, работают эффективно, и их можно переносить с одного компьютера на другой. MS Windows и новый метод разработки программ. Одним из наиболее важных механизмов взаимодействия программ является обмен данными. В MS Windows существует несколько способов взаимодействия приложений: - почтовый ящик; - динамический обмен данными; - встраивание объектов. Специальный почтовый ящик (clipboard) Windows позволяет пользователю переносить информацию из одного приложения в другое, не заботясь об ее форматах и представлении. В отличие от профессиональных операциональных операционных систем, где механизм обмена данными между программами доступен только программисту, в Windows это делается очень просто и наглядно для пользователя. Механизм обмена данных между приложениями - жизненно важное свойство многозадачной среды. И в настоящее время производители программного обеспечения пришли уже к выводу, что для переноса данных из одного приложения в другое почтового ящика уже недостаточно. Появился новый, более универсальный механизм - OLE (Object Linking and Embedding) - Встроенная объектная связь, который позволяет переносить из одного приложения в другое разнородные данные. Например, с помощью этого механизма данные, подготовленные в системе Time Line for Windows (Symantec), можно переносить в текстовый процессор Just Write ( Symantec ), а затем, скажем, в генератор приложений Object Vision (Borland). Правда, это уже нестандартное средство Microsoft Windows, но тем не менее реализация OLE стала возможной именно в Windows. Кроме механизма почтового ящика, предназначенного, в основном, для пользователя, программисту в Windows доступны специальные средства обмена данными между приложениями. Программным путем можно установить прямую связь между задачами, например, принимая данные из последовательного порта, автоматически помещать их, скажем, в ячейки электронной таблицы Excel, средствами которой можно тут же отображать сложные зависимости в виде графиков или осуществлять их обработку в реальном режиме времени (этот механизм носит название динамического обмена данными - Dynamic Data Exchange, DDE ). Основные термины Клиентское приложение DDE - приложение, которому необходимо установить диалог с сервером и получить данные от сервера в процессе диалога. DDE-диалог - взаимосвязь между клиентским и серверным приложениями. Сервер-приложение - DDE приложение, которое передает данные клиенту в процессе диалога. DDE-Транзакция -обмен сообщениями или данными между клиентом и сервером. Item имя - строка, идентифицирующая некоторое множество данных, которое сервер в состоянии передать клиенту в процессе диалога. Service имя - строка, генерируемая сервером и используемая клиентом для установления диалога. Строковый указатель - двойное слово, генерируемое операционной системой, идентифицирующее строку, передающуюся в процессе динамического обмена данными. Topic имя - строка, которая идентифицирует тип данных, необходимых клиентскому DDEML отвечает на вызов этой функции посылкой соответствующей транзакции XTYP_CONNECT в функцию обратного вызова каждого доступного в данный момент времени сервера, зарегистрированное имя которого совпадает с именем, переданным при помощи функции DdeConnect при условии, что сервер не отключал фильтр service имени вызовом функции DdeServiceName. Сервер может также установить фильтр на XTYP_CONNECT транзакцию заданием соответствующего флага CBF_FAIL_CONNECTIONS при вызове функции DdeInitialize. В процессе обработки транзакции типа XTYP_CONNECT DDEML передает полученные от клиента service и topic имена серверу. Сервер должен проверить эти имена и возвратить TRUE, если он в состоянии работать с такими именами, и FALSE в противном случае. Если ни один из существующих серверов не отвечает на CONNECT-запрос клиента, функция DDeConnect возвращает ему NULL с информацией о том, что в данный момент времени НЕ возможно установить диалог. Однако, если сервер возвратил TRUE, то диалог был успешно установлен и клиент получает идентификатор диалога - двойное слово, посредством которого и ведется обмен данными с сервером. Затем сервер получает транзакцию вида XTYP_CONNECT_CONFIRM (в случае, если он НЕ описывал флаг фильтра CBF_FAIL_CONFIRMS при вызове соответствующей функции). Если сервер возвращает TRUE в ответ на транзакцию XTYP_CONNECT, DDEML посылает транзакцию вида XTYP_CONNECT_CONFIRM в функцию обратного вызова данного сервера. Обработав эту транзакцию, сервер может получить идендификатор диалога. Вместо конкретного имени сервера клиент может установить шаблон диалога путем установки идентификаторов service и topic имен в NULL при вызове функции DdeConnect. Если хотя бы один из вышеперечисленных идентификаторов равен NULL, DDEML посылает транзакцию типа XTYP_WILDCONNECT в функцию обратного вызова всех активных в данный момент DDE-приложений (исключения составляют лишь те, кто при вызове соответствующей функции указал флаг фильтрации XTYP_WILDCONNECT). Любое сервер-приложение должно ответить на данную транзакцию и возвратить указатель на массив структур типа HSZPAIR, оканчивающийся нулем. Если сервер-приложение НЕ вызывает функцию DDeNameService для регистрации собственного service имени в системе и фильтр обработки транзакций включен, то сервер НЕ получит транзакцию вида XTYP_WILDCONNECT. Вышеописанный массив должен содержать одну структуру для каждого service и topic имен. DDEML выбирает одну пару из массива для установления диалога и возвращает его идентификатор клиенту. Затем DDEML посылает серверу транзакцию вида XTYP_CONNECT_CONFIRM (исключения составляют лишь те серверы, которые при инициализации установили фильтр обработки транзакций). Любой сервер или клиент может оборвать диалог в любое время путем вызова функции DdeDisconnect. Это означает, что партнер по обмену данными получает транзакцию типа XTYP_DISCONNECT в функции обратного вызова (если, конечно, партнер не установил фильтр обработки транзакций вида CBF_SKIP_DISCONNECTIONS). Обычно приложение реагирует на транзакцию XTYP_DISCONNECT вызовом функции DdeQueryInfo для получения информации о прекращенном диалоге. После того, как функция обратного вызова обработала транзакцию типа XTYP_DISCONNECT, идентификатор диалога больше не существует. Клиентское приложение, которое получает транзакцию типа XTYP_DISCONNECT в своей функции обратного вызова может попытаться возобновить диалог при помощи вызова функции DdeReconnect. Клиентское приложение может вызывать эту функцию только находясь внутри своей собственной функции обратного вызова. Сложный диалог Клиентское приложение может использовать функцию DdeConnectList для того, чтобы определить какие сервер-приложения существуют в системе в данный момент времени. Клиент обязательно должен описывать service и topic имена, когда он вызывает эту функцию; это означает, что DDEML должна послать транзакцию вида XTYP_CONNECT все функции обратного вызова всех имеющихся в данный момент сервер-приложений, чьи зарегистрированные имена совпадают с именами, указанными клиентом (исключение составляют лишь те серверы, которые фильтруют получаемые транзакции). В добавление к вышесказанному, можно отметить, что клиент, при вызове функции DdeConnectList, может указать NULL в качестве service или topic имени, либо же сразу для обоих. Все доступные в системе серверы, чьи зарегистрированные имена совпадают с именами, указанными клиентом, отвечают на его запрос. Диалог устанавливается со всеми такими серверами, даже если в системе запущено одно и тоже сервер-приложение несколько раз. Клиент может использовать функции DdeQueryNextServer и DdeQueryConvInfo для того, чтобы понять, какой сервер находится в списке, полученный при вызове функции DdeConnectList. DdeQueryNextServer возвращает идентификатор диалога для следующего сервера, находящегося в списке; DdeQueryConvInfo заполняет структуру CONVINFO информацией о диалоге. Клиент может сохранить полученные идентификаторы диалогов и отказаться от просмотра оставшихся серверов в списке. Приложение может оборвать индивидуальный диалог, находящийся в списке диалогов путем вызова функции DdeDisconnect; приложение может оборвать все диалоги, находящиеся в списке путем вызова функции DdeDisconnectList. Обе вышеуказанные функции указывают DDEML о необходимости посылки транзакции вида XTYP_DISCONNECT во все функции партнеров по диалогу данного приложения (в случае использования функции DdeDisconnectList будет посылаться транзакция XTYP_DISCONNECT для каждого элемента в списке диалогов). Обмен данными между приложениями Так как DDE использует области памяти для передачи данных из одного приложения в другое, DDEML обеспечивает конечного программиста функциями, при помощи которых DDE-приложения могут создавать и обрабатывать DDE-объекты. Весь спектр транзакций, который вызывает обмен данными, требует от приложения, экспортирующего их, создания некоторого буфера, содержащего эти данные, а затем вызова функции DdeCreateDataHandle. Эта функция создает DDE-объект, копирует данные из буфера в этот объект и возвращает идентификатор данных для данного приложения. Идентификатор данных-это двойное слово, которое использует DDEML для обеспечения доступа к данным в DDE-объекте. Для того, чтобы разделять данные в DDE-объекте, приложение передает идентификатор данных DDEML, а затем DDEML передает его в функцию обратного вызова приложения, получающего данные. Клиентское приложение получает указатель на DDE-объект путем передачи идентификатора данных функции DdeAccessData. Указатель, возвращаемый этой функцией, обеспечивает доступ к данным в формате 'ТОЛЬКО НА ЧТЕНИЕ'. Клиент должен просмотреть полученные данные при помощи этого указателя и вызвать функцию DdeUnaccessData для его уничтожения. Клиент может скопировать полученные данные в заранее приготовленный буфер посредством вызова функции DdeGetData. Обычно, когда приложение, создающее идентификатор данных, передает его DDEML, этот идентификатор портится внутри вышеуказанного приложения. В этом нет ничего страшного, если сервер должен разделять данные только с одним клиентом. Если же сервер должен разделять данные сразу с несколькими клиентами одновременно, ему придется указывать флаг HDATA_APPOWNED при вызове функции DdeCreateDataHandle. Это делает возможным получение прав собственности на DDE-объект сервер- приложения и предотвращает порчу идентификатора данных DDEML. Приложение может передавать DDEML идентификатор данных любое количество раз, однако вызывать функцию DdeCreateDataHandle можно лишь однажды. Если приложение указывает флаг HDATA_APPOWNED в параметре atCmd при вызове функции DdeCreateDataHandle, оно обязательно должно вызывать функцию DdeFreeDataHandle для очистки памяти вне зависимости от того, передавался ли идентификатор данных DDEML или нет. Перед тем как оборвать диалог, приложение должно вызывать функцию DdeFreeDataHandle для очистки всех созданных идентификаторов, но которые так и не были переданы DDEML. Если приложение еще не передало идентификатор DDE-объекта DDEML, то оно может добавить данные к уже существующему объекту или полностью заменить их в нем. Все эти сервисные функции обслуживаются функцией DdeAddData. Обычно приложение использует эту функцию для новой инициализации старых не уничтоженных DDE-объектов. После того, как приложение передает идентификатор данных DDEML, DDE-объект, идентифицирующий этот идентификатор НЕ может быть изменен, однако он может быть уничтожен. OLE-технология Как видно из описанного выше протокола DDE, приложения должны обязательно знать типы передаваемых данных, уметь их обрабатывать, а в основном даже могут работать только с символьными строками. Это, конечно, не очень удобно, когда необходимо, например, создать небольшой текст с различными картинками, пиктограммами и другими наглядными или не очень иллюстрациями. В этом случае на помощь программисту приходит OLE - встраивание объектов. Вместе с данными мы получаем машинный код, который эти данные может обрабатывать. Способы упорядочивания, источники и целевые документы При использовании OLE-технологии пользователь всегда имеет дело с одним ведущим приложением (главным) и одним ведомым (подчиненным), а точнее, с одним ведомым. Приложение, с помощью которого получен объект для встраивания всегда играет роль подчиненного. Это особенно характерно для случаев передачи объектов при встраивании и связывании через буфер промежуточного обмена. Часто используемые термины Приложение-источник и Целевое приложение касаются не подчинения приложений, а определяют генеалогию объектов. Некоторые Windows-приложения могут выступать только в роли подчиненных, а некоторые только в роли ведущих. Например, Paintbrush в OLE технологии может играть только роль подчиненного приложения, служащего для создания и модификации отдельных объектов. Другие приложения, например, Write или Cardfile можно считать оправданным с точки зрения, что гораздо чаще приходится вставлять иллюстрации в сложные по структуре текст, чем текст в иллюстрации. Новые приложения, такие как Word, могут выполнять в
Docsity logo